Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A millisecond pulsar in a stellar triple system


Gravitationally bound three-body systems have been studied for hundreds of years1,2 and are common in our Galaxy3,4. They show complex orbital interactions, which can constrain the compositions, masses and interior structures of the bodies5 and test theories of gravity6, if sufficiently precise measurements are available. A triple system containing a radio pulsar could provide such measurements, but the only previously known such system, PSR B1620-26 (refs 7, 8; with a millisecond pulsar, a white dwarf, and a planetary-mass object in an orbit of several decades), shows only weak interactions. Here we report precision timing and multiwavelength observations of PSR J0337+1715, a millisecond pulsar in a hierarchical triple system with two other stars. Strong gravitational interactions are apparent and provide the masses of the pulsar (1.4378(13), where is the solar mass and the parentheses contain the uncertainty in the final decimal places) and the two white dwarf companions (0.19751(15) and 0.4101(3)), as well as the inclinations of the orbits (both about 39.2°). The unexpectedly coplanar and nearly circular orbits indicate a complex and exotic evolutionary past that differs from those of known stellar systems. The gravitational field of the outer white dwarf strongly accelerates the inner binary containing the neutron star, and the system will thus provide an ideal laboratory in which to test the strong equivalence principle of general relativity.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Timing residuals and delays from the PSR J0337+1715 system.
Figure 2: Geometry of the PSR J0337+1715 system at the reference epoch.
Figure 3: Optical, infrared and ultraviolet data on PSR J0337+1715.


  1. Newton, I. Philosophiae Naturalis Principia Mathematica (Streater, 1687)

    MATH  Book  Google Scholar 

  2. Gutzwiller, M. C. Moon-Earth-Sun: the oldest three-body problem. Rev. Mod. Phys. 70, 589–639 (1998)

    ADS  Article  Google Scholar 

  3. Tokovinin, A., Thomas, S., Sterzik, M. & Udry, S. Tertiary companions to close spectroscopic binaries. Astron. Astrophys. 450, 681–693 (2006)

    ADS  Article  Google Scholar 

  4. Rappaport, S. et al. Triple-star candidates among the Kepler binaries. Astrophys. J. 768, 33 (2013)

    ADS  Article  Google Scholar 

  5. Fabrycky, D. C. in Exoplanets (ed. Seager, S. ) 217–238 (Univ. Arizona Press, 2011)

    Google Scholar 

  6. Kopeikin, S. & Vlasov, I. Parametrized post-Newtonian theory of reference frames, multipolar expansions and equations of motion in the N-body problem. Phys. Rep. 400, 209–318 (2004)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  7. Thorsett, S. E., Arzoumanian, Z., Camilo, F. & Lyne, A. G. The triple pulsar system PSR B1620–26 in M4. Astrophys. J. 523, 763–770 (1999)

    ADS  Article  Google Scholar 

  8. Sigurdsson, S., Richer, H. B., Hansen, B. M., Stairs, I. H. & Thorsett, S. E. A young white dwarf companion to pulsar B1620–26: evidence for early planet formation. Science 301, 193–196 (2003)

    ADS  CAS  PubMed  Article  Google Scholar 

  9. Bhattacharya, D. & van den Heuvel, E. P. J. Formation and evolution of binary and millisecond radio pulsars. Phys. Rep. 203, 1–124 (1991)

    ADS  CAS  Article  Google Scholar 

  10. Boyles, J. et al. The Green Bank Telescope 350 MHz drift-scan survey. I. Survey observations and the discovery of 13 pulsars. Astrophys. J. 763, 80 (2013)

    ADS  Article  Google Scholar 

  11. Lynch, R. S. et al. The Green Bank Telescope 350 MHz drift-scan survey II: data analysis and the timing of 10 new pulsars, including a relativistic binary. Astrophys. J. 763, 81 (2013)

    ADS  Article  Google Scholar 

  12. Wolszczan, A. & Frail, D. A. A planetary system around the millisecond pulsar PSR1257+12. Nature 355, 145–147 (1992)

    ADS  Article  Google Scholar 

  13. Wolszczan, A. confirmation of Earth-mass planets orbiting the millisecond pulsar PSR B1257+12. Science 264, 538–542 (1994)

    ADS  CAS  PubMed  Article  Google Scholar 

  14. Backer, D. C. & Hellings, R. W. Pulsar timing and general relativity. Annu. Rev. Astron. Astrophys. 24, 537–575 (1986)

    ADS  Article  Google Scholar 

  15. Peale, S. J. On the verification of the planetary system around PSR 1257+12. Astron. J. 105, 1562–1570 (1993)

    ADS  Article  Google Scholar 

  16. Abazajian, K. N. et al. The seventh data release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 182, 543–558 (2009)

    ADS  Article  Google Scholar 

  17. Portegies Zwart, S., van den Heuvel, E. P. J., van Leeuwen, J. & Nelemans, G. The formation of the eccentric-orbit millisecond pulsar J1903+0327 and the origin of single millisecond pulsars. Astrophys. J. 734, 55 (2011)

    ADS  Article  Google Scholar 

  18. Champion, D. J. et al. An eccentric binary millisecond pulsar in the Galactic plane. Science 320, 1309–1312 (2008)

    ADS  CAS  PubMed  Article  Google Scholar 

  19. Freire, P. C. C. et al. On the nature and evolution of the unique binary pulsar J1903+0327. Mon. Not. R. Astron. Soc. 412, 2763–2780 (2011)

    ADS  Article  Google Scholar 

  20. Mardling, R. A. New developments for modern celestial mechanics - I. General coplanar three-body systems. Application to exoplanets. Mon. Not. R. Astron. Soc. 435, 2187–2226 (2013)

    ADS  Article  Google Scholar 

  21. Ford, E. B., Kozinsky, B. & Rasio, F. A. Secular evolution of hierarchical triple star systems. Astrophys. J. 535, 385–401 (2000)

    ADS  Article  Google Scholar 

  22. Larwood, J. D. & Papaloizou, J. C. B. The hydrodynamical response of a tilted circumbinary disc: linear theory and non-linear numerical simulations. Mon. Not. R. Astron. Soc. 285, 288–302 (1997)

    ADS  Article  Google Scholar 

  23. Tauris, T. M. & Savonije, G. J. Formation of millisecond pulsars. I. Evolution of low-mass X-ray binaries with Porb > 2 days. Astron. Astrophys. 350, 928–944 (1999)

    ADS  CAS  Google Scholar 

  24. Özel, F., Psaltis, D., Narayan, R. & Santos Villarreal, A. On the mass distribution and birth masses of neutron stars. Astrophys. J. 757, 55 (2012)

    ADS  Article  Google Scholar 

  25. Lattimer, J. M. The nuclear equation of state and neutron star masses. Annu. Rev. Nucl. Particle Sci. 62, 485–515 (2012)

    ADS  CAS  Article  Google Scholar 

  26. Will, C. M. The confrontation between general relativity and experiment. Living Rev. Relativ. 9, 3 (2006)

    ADS  PubMed  PubMed Central  MATH  Article  Google Scholar 

  27. Freire, P. C. C., Kramer, M. & Wex, N. Tests of the universality of free fall for strongly self-gravitating bodies with radio pulsars. Classical Quant. Grav. 29, 184007 (2012)

    ADS  MATH  Article  Google Scholar 

  28. Stairs, I. H. et al. Discovery of three wide-orbit binary pulsars: implications for binary evolution and equivalence principles. Astrophys. J. 632, 1060–1068 (2005)

    ADS  Article  Google Scholar 

  29. Gonzalez, M. E. et al. High-precision timing of five millisecond pulsars: space velocities, binary evolution, and equivalence principles. Astrophys. J. 743, 102 (2011)

    ADS  Article  Google Scholar 

  30. Kurucz, R. ATLAS9 Stellar Atmosphere Programs and 2 km/s Grid (Kurucz CD-ROM No. 13., Smithsonian Astrophysical Observatory, 1993)

    Google Scholar 

  31. DuPlain, R. et al. in Advanced Software and Control for Astronomy II (eds Bridger, A. & Radziwill, N. M. ) (SPIE Conf. Ser. 7019, SPIE, 2008)

  32. Karuppusamy, R., Stappers, B. & van Straten, W. PuMa-II: a wide band pulsar machine for the Westerbork Synthesis Radio Telescope. Proc. Astron. Soc. Pacif. 120, 191–202 (2008)

    ADS  Article  Google Scholar 

  33. Hankins, T. H. & Rickett, B. J. in Methods in Computational Physics Vol. 14 Radio Astronomy (eds Alder, B., Fernbach, S. & Rotenberg, M. ) 55–129 (Academic, 1975)

    Google Scholar 

  34. Taylor, J. H. Pulsar timing and relativistic gravity. R. Soc. Lond. Phil. Trans. A 341, 117–134 (1992)

    ADS  Article  Google Scholar 

  35. Hobbs, G. B., Edwards, R. T. & Manchester, R. N. TEMPO2, a new pulsar-timing package - I. An overview. Mon. Not. R. Astron. Soc. 369, 655–672 (2006)

    ADS  Article  Google Scholar 

  36. Bulirsch, R. & Stoer, J. Asymptotic upper and lower bounds for results of extrapolation methods. Numer. Math. 8, 93–104 (1966)

    MathSciNet  MATH  Article  Google Scholar 

  37. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. Proc. Astron. Soc. Pacif. 125, 306–312 (2013)

    ADS  Article  Google Scholar 

  38. Morrissey, P. et al. The calibration and data products of GALEX. Astrophys. J. Suppl. Ser. 173, 682–697 (2007)

    ADS  CAS  Article  Google Scholar 

  39. Meixner, M. et al. Design overview and performance of the WIYN High Resolution Infrared Camera (WHIRC). Proc. Astron. Soc. Pacif. 122, 451–469 (2010)

    ADS  Article  Google Scholar 

  40. Fazio, G. G. et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 154, 10–17 (2004)

    ADS  Article  Google Scholar 

  41. Tremblay, P.-E., Bergeron, P. & Gianninas, A. An improved spectroscopic analysis of DA white dwarfs from the Sloan Digital Sky Survey data release 4. Astrophys. J. 730, 128 (2011)

    ADS  Article  CAS  Google Scholar 

  42. Cordes, J. M. & Lazio, T. J. W. NE2001.I. A new model for the Galactic distribution of free electrons and its fluctuations. Preprint at (2002)

  43. Cox, A. N. Allen’s Astrophysical Quantities 4th edn, 381–396 (AIP Press/Springer, 2000)

    Google Scholar 

  44. Deller, A. T. et al. DiFX-2: a more flexible, efficient, robust, and powerful software correlator. Proc. Astron. Soc. Pacif. 123, 275–287 (2011)

    ADS  Article  Google Scholar 

  45. Condon, J. J. et al. The NRAO VLA Sky Survey. Astron. J. 115, 1693–1716 (1998)

    ADS  Article  Google Scholar 

  46. Chatterjee, S. et al. Precision astrometry with the Very Long Baseline Array: parallaxes and proper motions for 14 pulsars. Astrophys. J. 698, 250–265 (2009)

    ADS  Article  Google Scholar 

Download references


We thank D. Levitan and R. Simcoe for providing optical and infrared observations; J. Deneva for early Arecibo telescope observations; P. Bergeron for use of his white dwarf photometry models; K. O’Neil and F. Camilo for approving discretionary time observations on the GBT and the Arecibo telescope, respectively; J. Heyl, E. Algol, and P. Freire for discussions; and G. Kuper, J. Sluman, Y. Tang, G. Jozsa, and R. Smits for their help supporting the WSRT observations. The GBT and VLBA are operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The Arecibo Observatory is operated by SRI International in alliance with Ana G. Méndez-Universidad Metropolitana and the Universities Space Research Association, under a cooperative agreement with the National Science Foundation. The WSRT is operated by the Netherlands Institute for Radio Astronomy (ASTRON). This paper made use of data from the WIYN Observatory at Kitt Peak National Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy under cooperative agreement with the National Science Foundation. This work is also based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. I.H.S., V.M.K., M.H.v.K. and A.B. acknowledge support from NSERC. A.M.A. and J.W.T.H. acknowledge support from a Vrije Competitie grant from NWO. J.B., D.R.L, V.I.K. and M.A.M. were supported by a WV EPSCoR Research Challenge Grant. V.M.K. acknowledges support from CRAQ/FQRNT, CIFAR, the Canada Research Chairs Program and the Lorne Trottier Chair.

Author information

Authors and Affiliations



S.M.R., M.A.M. and D.R.L. were joint principal investigators of the GBT survey that found the pulsar, and all other authors except D.L.K., M.H.v.K., A.T.D., S.C. and A.S.-R. were members of the survey team who observed and processed data. J.B. found the pulsar in the search candidates. S.M.R. identified the source as a triple, wrote follow-up proposals, observed with the GBT, phase-connected the timing solution and wrote the manuscript. I.H.S. and J.W.T.H. performed timing observations, wrote follow-up proposals and substantially contributed to the initial timing solution. A.M.A. developed the successful timing model and performed the numerical integrations and MCMC analyses. D.L.K. identified the optical counterpart and then, with M.H.v.K. and A.S.-R., performed optical and infrared observations and the multiwavelength analysis. M.H.v.K. and D.L.K. both helped develop parts of the timing model. A.T.D. and S.C. performed the VLBA analysis. All authors contributed to interpretation of the data and the results and to the final version of the manuscript.

Corresponding author

Correspondence to S. M. Ransom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ransom, S., Stairs, I., Archibald, A. et al. A millisecond pulsar in a stellar triple system. Nature 505, 520–524 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing