North Atlantic warming and the retreat of Greenland's outlet glaciers

Abstract

Mass loss from the Greenland ice sheet quadrupled over the past two decades, contributing a quarter of the observed global sea-level rise. Increased submarine melting is thought to have triggered the retreat of Greenland's outlet glaciers, which is partly responsible for the ice loss. However, the chain of events and physical processes remain elusive. Recent evidence suggests that an anomalous inflow of subtropical waters driven by atmospheric changes, multidecadal natural ocean variability and a long-term increase in the North Atlantic's upper ocean heat content since the 1950s all contributed to a warming of the subpolar North Atlantic. This led, in conjunction with increased runoff, to enhanced submarine glacier melting. Future climate projections raise the potential for continued increases in warming and ice-mass loss, with implications for sea level and climate.

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Retreat of Greenland's outlet glaciers is occurring at a time when the waters of the subpolar North Atlantic are the warmest on record.
Figure 2: Retreat and thinning of Greenland's outlet glaciers.

G. HAMILTON

Figure 3: Thinning of the Greenland ice sheet is concentrated at the margins of the subpolar North Atlantic.
Figure 4: Fjord and continental shelf exchanges.
Figure 5: Submarine melting.

References

  1. 1

    Shepherd, A. et al. A reconciled estimate of ice-sheet mass balance. Science 338, 1183–1189 (2012).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Hanna, E. et al. Ice-sheet mass balance and climate change. Nature 498, 51–59 (2013).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Church, J. A. et al. Revisiting the Earth's sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 38, L18601 (2011).

    Article  ADS  Google Scholar 

  4. 4

    Dickson, R. et al. Current estimates of freshwater flux through Arctic and subarctic seas. Prog. Oceanogr. 73, 210–230 (2007).

    Article  ADS  Google Scholar 

  5. 5

    Bamber, J., van den Broeke, M., Ettema, J., Lenaerts, J. & Rignot, E. Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett. 39, L19501 (2012).

    Article  ADS  Google Scholar 

  6. 6

    van den Broeke, M. et al. Partitioning recent Greenland mass loss. Science 326, 984–986 (2009).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Krabill, W. Greenland Ice Sheet: increased coastal thinning. Geophys. Res. Lett. 31, L24402 (2004).

    Article  ADS  CAS  Google Scholar 

  8. 8

    Hanna, E. et al. Greenland ice sheet surface mass balance 1870 to 2010 based on Twentieth century reanalysis, and links with global climate forcing. J. Geophys. Res. 116, D24121 (2011).

    Article  ADS  Google Scholar 

  9. 9

    Sole, A., Payne, T., Bamber, J., Nienow, P. & Krabill, W. Testing hypotheses of the cause of peripheral thinning of the Greenland ice sheet: is land-terminating ice thinning at anomalously high rates? Cryosphere 2, 205–218 (2008).

    Article  ADS  Google Scholar 

  10. 10

    Rignot, E. & Kanagaratnam, P. Changes in the velocity structure of the Greenland ice sheet. Science 311, 986–990 (2006).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Howat, I. M., Joughin, I. & Scambos, T. A. Rapid changes in ice discharge from Greenland outlet glaciers. Science 315, 1559–1561 (2007).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Khan, S. A., Wahr, J., Bevis, M., Velicogna, I. & Kendrick, E. Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophys. Res. Lett. 37, L06501 (2010).

    Article  ADS  Google Scholar 

  13. 13

    Moon, T., Joughin, I., Smith, B. & Howat, I. 21st-century evolution of Greenland outlet glacier velocities. Science 336, 576–578 (2012).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Box, J. E., Yang, L., Bromwich, D. H. & Bai, L.-S. Greenland ice sheet surface air temperature variability: 1840–2007. J. Clim. 22, 4029–4049 (2009).

    Article  ADS  Google Scholar 

  15. 15

    Bersch, M., Yashayaev, I. & Koltermann, K. P. Recent changes of the thermohaline circulation in the subpolar North Atlantic. Ocean Dyn. 57, 223–235 (2007).

    Article  ADS  Google Scholar 

  16. 16

    Hanna, E. et al. The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff. Int. J. Climatol. 33, 862–880 (2013).

    Article  Google Scholar 

  17. 17

    Hall, D. K. et al. Variability in the surface temperature and melt extent of the Greenland ice sheet from MODIS. Geophys. Res. Lett. 40, 2114–2120 (2013).

    Article  ADS  Google Scholar 

  18. 18

    Nick, F. M., Vieli, A., Howat, I. M. & Joughin, I. Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nature Geosci. 2, 110–114 (2009).

    CAS  Article  ADS  Google Scholar 

  19. 19

    Pritchard, H. D., Arthern, R. J., Vaughan, D. G. & Edwards, L. A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461, 971–975 (2009).

    CAS  Article  ADS  Google Scholar 

  20. 20

    Joughin, I., Abdalati, W. & Fahnestock, M. Large fluctuations in speed on Greenland's Jakobshavn Isbrae glacier. Nature 432, 608–610 (2004).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Thomas, R. H. Force-perturbation analysis of recent thinning and acceleration of Jakobshavn Isbrae, Greenland. J. Glaciol. 50, 57–66 (2004).

    Article  ADS  Google Scholar 

  22. 22

    Luckman, A., Murray, T., de Lange, R. & Hanna, E. Rapid and synchronous ice-dynamic changes in East Greenland. Geophys. Res. Lett. 33, L03503 (2006).

    Article  ADS  Google Scholar 

  23. 23

    Vieli, A. & Nick, F. M. Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: issues and implications. Surv. Geophys. 32, 437–458 (2011).

    Article  ADS  Google Scholar 

  24. 24

    Joughin, I. et al. Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: observation and model-based analysis. J. Geophys. Res. 117, F02030 (2012).

    Article  ADS  Google Scholar 

  25. 25

    Joughin, I., Alley, R. & Holland, D. Ice-sheet response to oceanic forcing. Science 338, 1172–1176 (2012).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Straneo, F. et al. Challenges to understand the dynamic response of Greenland's marine terminating glaciers to oceanic and atmospheric forcing. Bull. Am. Meteorol. Soc. 94, 1131–1144 (2013).

    Article  ADS  Google Scholar 

  27. 27

    Amundson, J. M. et al. Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res. 115, F01005 (2010).

    Article  ADS  Google Scholar 

  28. 28

    Holland, D. M., Thomas, R. H., de Young, B., Ribergaard, M. H. & Lyberth, B. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nature Geosci. 1, 659–664 (2008).

    CAS  Article  ADS  Google Scholar 

  29. 29

    Yashayaev, I. Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr. 73, 242–276 (2007).

    Article  ADS  Google Scholar 

  30. 30

    Våge, K. et al. The Irminger Gyre: Circulation, convection, and interannual variability. Deep Sea Res. Part I 58, 590–614 (2011).

    Article  Google Scholar 

  31. 31

    Sutherland, D. A. & Pickart, R. S. The east Greenland coastal current: structure, variability, and forcing. Prog. Oceanogr. 78, 58–77 (2008).

    Article  ADS  Google Scholar 

  32. 32

    Williams, R. G., Roussenov, V., Smith, D. & Lozier, S. Decadal evolution of ocean thermal anomalies 1 in the North Atlantic: the effect of Ekman, overturning and horizontal transport. J. Clim. http://dx.doi.org/10.1175/JCLI-D-12-00234.1 (2013).

  33. 33

    Myers, P. G. & Ribergaard, M. H. Warming of the Polar Water in Disko Bay and potential impact on Jakobshavn Isbrae. J. Phys. Oceanogr. http://dx.doi.org/10.1175/JPO-D-12-051.1 (2013).

  34. 34

    Myers, P. G., Kulan, N. & Ribergaard, M. H. Irminger water variability in the west Greenland current. Geophys. Res. Lett. 34, L17601 (2007).

    Article  ADS  Google Scholar 

  35. 35

    Zweng, M. M. & Münchow, A. Warming and freshening of Baffin Bay, 1916–2003. J. Geophys. Res. 111, C07016 (2006).

    Article  ADS  CAS  Google Scholar 

  36. 36

    Sutherland, D. A. et al. Atlantic water variability on the Southeast Greenland continental shelf and its relationship to SST and bathymetry. J. Geophys. Res. Oceans 118, 847–855 (2013).

    Article  ADS  Google Scholar 

  37. 37

    Christoffersen, P. et al. Warming of waters in an East Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions. Cryosphere 5, 701–714 (2011).

    Article  ADS  Google Scholar 

  38. 38

    Rignot, E., Koppes, M. C. & Velicogna, I. Rapid submarine melting of the calving faces of West Greenland glaciers. Nature Geosci. 3, 187–191 (2010).

    CAS  Article  ADS  Google Scholar 

  39. 39

    Straneo, F. et al. Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nature Geosci. 3, 182–186 (2010).

    CAS  Article  ADS  Google Scholar 

  40. 40

    Johnson, H. L., Münchow, A., Falkner, K. K. & Melling, H. Ocean circulation and properties in Petermann Fjord, Greenland. J. Geophys. Res. 116, C01003 (2011).

    ADS  Google Scholar 

  41. 41

    Straneo, F. et al. Characteristics of ocean waters reaching Greenland's glaciers. Ann. Glaciol. 53, 202–210 (2012).

    Article  ADS  Google Scholar 

  42. 42

    Sutherland, D. A. & Straneo, F. Estimating ocean heat transports and submarine melt rates in Sermilik Fjord, Greenland, using lowered acoustic Doppler current profiler (LADCP) velocity profiles. Ann. Glaciol. 53, 50–58 (2012).

    Article  ADS  Google Scholar 

  43. 43

    Mortensen, J. et al. On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord. J. Geophys. Res. Oceans 118, 1382–1395 (2013).

    Article  ADS  Google Scholar 

  44. 44

    Mortensen, J., Lennert, K., Bendtsen, J. & Rysgaard, S. Heat sources for glacial melt in a sub-Arctic fjord (Godthåbsfjord) in contact with the Greenland Ice Sheet. J. Geophys. Res. 116, C01013 (2011).

    Article  ADS  Google Scholar 

  45. 45

    Holland, D. M. & Jenkins, A. Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr. 29, 1787–1800 (1999).

    Article  ADS  Google Scholar 

  46. 46

    Jenkins, A. Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr. 41, 2279–2294 (2011).

    Article  ADS  Google Scholar 

  47. 47

    Sciascia, R., Straneo, F., Cenedese, C. & Heimbach, P. Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res. 118, 2492–2506 (2013).

    Article  ADS  Google Scholar 

  48. 48

    Straneo, F. et al. Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nature Geosci. 4, 322–327 (2011).

    CAS  Article  ADS  Google Scholar 

  49. 49

    Motyka, R. J., Hunter, L., Echelmeyer, K. A. & Connor, C. Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, USA. Ann. Glaciol. 36, 57–65 (2003).

    Article  ADS  Google Scholar 

  50. 50

    Xu, Y., Rignot, E., Fenty, I., Menemenlis, D. & Flexas, M. M. Subaqueous melting of Store Glacier, West Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophys. Res. Lett. 40, 4648–4653 (2013).

    Article  ADS  Google Scholar 

  51. 51

    Xu, Y., Rignot, E., Menemenlis, D. & Koppes, M. Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Ann. Glaciol. 53, 229–234 (2012).

    Article  ADS  Google Scholar 

  52. 52

    Motyka, R. J. et al. Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat. J. Geophys. Res. 116, F01007 (2011).

    Article  ADS  Google Scholar 

  53. 53

    Mugford, R. I. & Dowdeswell, J. A. Modeling glacial meltwater plume dynamics and sedimentation in high-latitude fjords. J. Geophys. Res. 116, F01023 (2011).

    Article  ADS  Google Scholar 

  54. 54

    Salcedo-Castro, J., Bourgault, D. & deYoung, B. Circulation induced by subglacial discharge in glacial fjords results from idealized numerical simulations. Cont. Shelf Res. 31, 1396–1406 (2011).

    Article  ADS  Google Scholar 

  55. 55

    Häkkinen, S., Rhines, P. B. & Worthen, D. L. Northern North Atlantic sea surface height and ocean heat content variability. J. Geophys. Res. Oceans 118, 3670–3678 (2013).

    Article  ADS  Google Scholar 

  56. 56

    Polyakov, I. V. et al. Multidecadal variability of North Atlantic temperature and salinity during the twentieth century. J. Clim. 18, 4562–4581 (2005).

    Article  ADS  Google Scholar 

  57. 57

    Reverdin, G. North Atlantic subpolar gyre surface variability (1895–2009). J. Clim. 23, 4571–4584 (2010).

    Article  ADS  Google Scholar 

  58. 58

    Andresen, C. S. et al. Rapid response of Helheim glacier in Greenland to climate variability over the past century. Nature Geosci. 5, 37–41 (2012).

    CAS  Article  ADS  Google Scholar 

  59. 59

    Lloyd, J. M. et al. A 100 year record of ocean temperature control on the stability of Jakobshavn Isbrae, West Greenland. Geology 39, 867–870 (2011).

    Article  ADS  Google Scholar 

  60. 60

    Bjørk, A. A. et al. An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland. Nature Geosci. 5, 427–432 (2012).

    Article  ADS  CAS  Google Scholar 

  61. 61

    Howat, I. M. & Eddy, A. Multi-decadal retreat of Greenland's marine-terminating glaciers. J. Glaciol. 57, 389–396 (2011).

    Article  ADS  Google Scholar 

  62. 62

    Häkkinen, S. & Rhines, P. B. Decline of subpolar North Atlantic circulation during the 1990s. Science 304, 555–559 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Hátún, H., Sandø, A. B., Drange, H., Hansen, B. & Valdimarsson, H. Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science 309, 1841–1844 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Häkkinen, S., Rhines, P. B. & Worthen, D. L. Atmospheric blocking and Atlantic multidecadal ocean variability. Science 334, 655–659 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Woollings, T. & Hoskins, B. Simultaneous Atlantic–Pacific blocking and the Northern annular mode. Q. J. R. Meteorol. Soc. 134, 1635–1646 (2008).

    Article  ADS  Google Scholar 

  66. 66

    Hurrell, J. W. Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269, 676–679 (1995).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Visbeck, M. et al. in The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Vol. 134 (eds Hurrell, J. W. et al.) 113–145 (AGU, 2003).

    Google Scholar 

  68. 68

    Lozier, M. S. et al. The spatial pattern and mechanisms of heat-content change in the North Atlantic. Science 319, 800–803 (2008).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Lohmann, K., Drange, H. & Bentsen, M. A possible mechanism for the strong weakening of the North Atlantic subpolar gyre in the mid-1990s. Geophys. Res. Lett. 36, L15602 (2009).

    Article  ADS  Google Scholar 

  70. 70

    Schlesinger, M. E. & Ramanjutty, N. An oscillation in the global climate system of period 65–70 years. Nature 367, 723–726 (1994).

    Article  ADS  Google Scholar 

  71. 71

    Enfield, D. B., Mestas-Nunez, A. M. & Trimble, P. J. The Atlantic multidecadal oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys. Res. Lett. 28, 2077–2080 (2001).

    Article  ADS  Google Scholar 

  72. 72

    Polyakov, I. V., Pnyushkov, A. V. & Timokhov, L. A. Warming of the intermediate Atlantic water of the Arctic Ocean in the 2000s. J. Clim. 25, 8362–8370 (2012).

    Article  ADS  Google Scholar 

  73. 73

    Trenberth, K. E. & Shea, D. J. Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett. 33, L12704 (2006).

    Article  ADS  Google Scholar 

  74. 74

    Chhak, K. C., Moore, A. M. & Milliff, R. F. Stochastic forcing of ocean variability by the North Atlantic oscillation. J. Phys. Oceanogr. 39, 162–184 (2009).

    Article  ADS  Google Scholar 

  75. 75

    Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, L10603 (2012).

    Article  ADS  Google Scholar 

  76. 76

    Manabe, S. & Stouffer, R. J. Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res. 85, 5529–5554 (1980).

    Article  ADS  Google Scholar 

  77. 77

    Chylek, P., Folland, C. K., Lesins, G., Dubey, M. K. & Wang, M. Arctic air temperature change amplification and the Atlantic multidecadal oscillation. Geophys. Res. Lett. 36, L14801 (2009).

    Article  ADS  Google Scholar 

  78. 78

    Yin, J. et al. Different magnitudes of projected subsurface ocean warming around Greenland and Antarctica. Nature Geosci. 4, 524–528 (2011).

    CAS  Article  ADS  Google Scholar 

  79. 79

    Post, A., O'Neel, S., Motyka, R. J. & Streveler, G. A complex relationship between calving glaciers and climate. Eos Trans. AGU 92, 305–306 (2011).

    Article  ADS  Google Scholar 

  80. 80

    O'Leary, M. & Christoffersen, P. Calving on tidewater glaciers amplified by submarine frontal melting. Cryosphere 7, 119–128 (2013).

    Article  ADS  Google Scholar 

  81. 81

    Podrasky, D., Truffer, M., Fahnestock, M., Amundson, J. M., Cassotto, R., & Joughin, I. Outlet glacier response to forcing over hourly to interannual timescales, Jakobshavn Isbræ, Greenland. J. Glaciol. 58, 1212–1226 (2012).

    Article  ADS  Google Scholar 

  82. 82

    Woollings, T., Gregory, J. M., Pinto, J. G., Reyers, M. & Brayshaw, D. J. Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling. Nature Geosci. 5, 313–317 (2012).

    CAS  Article  ADS  Google Scholar 

  83. 83

    Lindstrom, E. et al. A framework for Ocean Observing http://dx.doi.org/10.5270/OceanObs09-FOO (UNESCO, 2012)

    Google Scholar 

  84. 84

    Stammer, D. Response of the global ocean to Greenland and Antarctic ice melting. J. Geophys. Res. 113, C06022 (2008).

    Article  ADS  Google Scholar 

  85. 85

    Lorbacher, K., Marsland, S. J., Church, J. A., Griffies, S. M. & Stammer, D. Rapid barotropic sea level rise from ice sheet melting. J. Geophys. Res. 117, C06003 (2012).

    Article  ADS  Google Scholar 

  86. 86

    Mitrovica, J. X. et al. On the robustness of predictions of sea level fingerprints. Geophys. J. Int. 187, 729–742 (2011).

    Article  ADS  Google Scholar 

  87. 87

    Manabe, S. & Stouffer, R. J. Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature 378, 165–167 (1995).

    CAS  Article  ADS  Google Scholar 

  88. 88

    Marsh, R. et al. Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model. Ocean Sci. 6, 749–760 (2010).

    Article  ADS  Google Scholar 

  89. 89

    Weijer, W., Maltrud, M. E., Hecht, M. W., Dijkstra, H. A. & Kliphuis, M. A. Response of the Atlantic ocean circulation to Greenland ice sheet melting in a strongly-eddying ocean model. Geophys. Res. Lett. 39, L09606 (2012).

    Article  ADS  Google Scholar 

  90. 90

    Hu, A. et al. Influence of continental ice retreat on future global climate. J. Clim. 26, 3087–3111 (2013).

    Article  ADS  Google Scholar 

  91. 91

    Gelderloos, R., Katsman, C. A. & Drijfhout, S. S. Assessing the roles of three eddy types in restratifying the Labrador Sea after deep convection. J. Phys. Oceanogr. 41, 2102–2119 (2011).

    Article  ADS  Google Scholar 

  92. 92

    Stammer, D., Cazenave, A., Ponte, R. M. & Tamisiea, M. E. Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci. 5, 21–46 (2013).

    Article  Google Scholar 

  93. 93

    Pfeffer, W. T., Harper, J. T. & O'Neel, S. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321, 1340–1343 (2008).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Price, S. F., Payne, A. J., Howat, I. M. & Smith, B. E. Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. Proc. Natl Acad. Sci. USA 108, 8978–8983 (2011).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Gillet-Chaulet, F. et al. Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model. Cryosphere 6, 1561–1576 (2012).

    Article  ADS  Google Scholar 

  96. 96

    Nick, F. M. et al. Future sea-level rise from Greenland's main outlet glaciers in a warming climate. Nature 497, 235–238 (2013).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Nowicki, S. et al. Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland. J. Geophys. Res. Earth Surf. 118, 1025–1044 (2013).

    Article  ADS  Google Scholar 

  98. 98

    Wunsch, C. & Heimbach, P. in Ocean Circulation and Climate: A 21st Century Perspective 2nd edn (eds Siedler, G., Church, J. Gould, J. & Griffies, S.) 553–579 (Elsevier, 2013).

    Google Scholar 

  99. 99

    Wouters, B., Bamber, J. L., van den Broeke, M. R., Lenaerts, J. T. M. & Sasgen, I. Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nature Geosci. 6, 613–616 (2013).

    CAS  Article  ADS  Google Scholar 

  100. 100

    Wunsch, C., Schmitt, R. W. & Baker, D. J. Climate change as an intergenerational problem. Proc. Natl Acad. Sci. USA 110, 4435–4436 (2013).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Part of the work discussed here benefited from discussions within the US CLIVAR Working Group on Greenland Ice Sheet–Ocean Interactions (GRISO). US CLIVAR and its sponsoring agencies are thanked for supporting a workshop on this subject held in Beverly, Massachusetts, from June 4–7, 2013. P.H. gratefully acknowledges core support through the Estimating the Circulation and Climate of the Oceans (ECCO) project, and supplemental funding from NASA, NSF, DOE and NOAA. F.S. gratefully acknowledges funding from NSF, NASA and WHOI's OCCI.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fiammetta Straneo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Straneo, F., Heimbach, P. North Atlantic warming and the retreat of Greenland's outlet glaciers. Nature 504, 36–43 (2013). https://doi.org/10.1038/nature12854

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing