Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CNVs conferring risk of autism or schizophrenia affect cognition in controls

This article has been updated

Abstract

In a small fraction of patients with schizophrenia or autism, alleles of copy-number variants (CNVs) in their genomes are probably the strongest factors contributing to the pathogenesis of the disease. These CNVs may provide an entry point for investigations into the mechanisms of brain function and dysfunction alike. They are not fully penetrant and offer an opportunity to study their effects separate from that of manifest disease. Here we show in an Icelandic sample that a few of the CNVs clearly alter fecundity (measured as the number of children by age 45). Furthermore, we use various tests of cognitive function to demonstrate that control subjects carrying the CNVs perform at a level that is between that of schizophrenia patients and population controls. The CNVs do not all affect the same cognitive domains, hence the cognitive deficits that drive or accompany the pathogenesis vary from one CNV to another. Controls carrying the chromosome 15q11.2 deletion between breakpoints 1 and 2 (15q11.2(BP1-BP2) deletion) have a history of dyslexia and dyscalculia, even after adjusting for IQ in the analysis, and the CNV only confers modest effects on other cognitive traits. The 15q11.2(BP1-BP2) deletion affects brain structure in a pattern consistent with both that observed during first-episode psychosis in schizophrenia and that of structural correlates in dyslexia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Association of CNV groups with cognitive traits, GAF, ARHQ and AMHQ scores.
Figure 2: Association of CNVs with cognitive traits, GAF, ARHQ and AMHQ scores.
Figure 3: Dose-dependent alterations in brain structure in 15q11.2(BP1-BP2) CNV carriers.

Similar content being viewed by others

Change history

  • 15 January 2014

    A middle initial was added in the author list.

References

  1. Stefansson, H. et al. Large recurrent microdeletions associated with schizophrenia. Nature 455, 232–236 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kirov, G. et al. The penetrance of copy number variations for schizophrenia and developmental delay. Biol. Psychiatry (2013)

  3. Malhotra, D. & Sebat, J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 148, 1223–1241 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haukka, J., Suvisaari, J. & Lonnqvist, J. Fertility of patients with schizophrenia, their siblings, and the general population: a cohort study from 1950 to 1959 in Finland. Am. J. Psychiatry 160, 460–463 (2003)

    Article  PubMed  Google Scholar 

  5. Sheehan, D. V. et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 59 (Suppl. 20). 22–33 quiz 34–57 (1998)

    PubMed  Google Scholar 

  6. Meins, W., Jacobsen, G. & Stratmann, C. Social adjustment of psychiatric patients: evaluation of a modified version of the GAF (Global Assessment of Functioning) Scale. [in German with English abstract] Psychiatr. Prax. 22, 206–208 (1995)

    CAS  Google Scholar 

  7. Sitskoorn, M. M., Aleman, A., Ebisch, S. J., Appels, M. C. & Kahn, R. S. Cognitive deficits in relatives of patients with schizophrenia: a meta-analysis. Schizophr. Res. 71, 285–295 (2004)

    Article  PubMed  Google Scholar 

  8. Snitz, B. E., Macdonald, A. W., III & Carter, C. S. Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analytic review of putative endophenotypes. Schizophr. Bull. 32, 179–194 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mesholam-Gately, R. I., Giuliano, A. J., Goff, K. P., Faraone, S. V. & Seidman, L. J. Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology 23, 315–336 (2009)

    Article  PubMed  Google Scholar 

  10. Rund, B. R. A review of longitudinal studies of cognitive functions in schizophrenia patients. Schizophr. Bull. 24, 425–435 (1998)

    Article  CAS  PubMed  Google Scholar 

  11. Bjornsdottir, G. et al. The adult reading history questionnaire (ARHQ) in Icelandic: psychometric properties and factor structure. J. Learn. Disabil. (2013)

  12. Lefly, D. L. & Pennington, B. F. Reliability and validity of the adult reading history questionnaire. J. Learn. Disabil. 33, 286–296 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. Jacquemont, S. et al. Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature 478, 97–102 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weiss, L. A. et al. Association between microdeletion and microduplication at 16p11.2 and autism. N. Engl. J. Med. 358, 667–675 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. McCarthy, S. E. et al. Microduplications of 16p11.2 are associated with schizophrenia. Nature Genet. 41, 1223–1227 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. Park, S. & Holzman, P. S. Schizophrenics show spatial working memory deficits. Arch. Gen. Psychiatry 49, 975–982 (1992)

    Article  CAS  PubMed  Google Scholar 

  17. Doornbos, M. et al. Nine patients with a microdeletion 15q11.2 between breakpoints 1 and 2 of the Prader-Willi critical region, possibly associated with behavioural disturbances. Eur. J. Med. Genet. 52, 108–115 (2009)

    Article  PubMed  Google Scholar 

  18. Burnside, R. D. et al. Microdeletion/microduplication of proximal 15q11.2 between BP1 and BP2: a susceptibility region for neurological dysfunction including developmental and language delay. Hum. Genet. 130, 517–528 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Kovel, C. G. et al. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain 133, 23–32 (2010)

    Article  PubMed  Google Scholar 

  20. World Health Organization. ICD-10: International Statistical Classification of Diseases and Related Health Problems 10th edn (WHO, 2008)

  21. Radua, J. et al. Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication. Neurosci. Biobehav. Rev. 36, 2325–2333 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. Diorio, D., Viau, V. & Meaney, M. J. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J. Neurosci. 13, 3839–3847 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lederbogen, F. et al. City living and urban upbringing affect neural social stress processing in humans. Nature 474, 498–501 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Palaniyappan, L. & Liddle, P. F. Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. J. Psychiatry Neurosci. 37, 17–27 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bora, E. et al. Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis. Schizophr. Res. 127, 46–57 (2011)

    Article  PubMed  Google Scholar 

  27. Arnone, D., McIntosh, A. M., Tan, G. M. & Ebmeier, K. P. Meta-analysis of magnetic resonance imaging studies of the corpus callosum in schizophrenia. Schizophr. Res. 101, 124–132 (2008)

    Article  CAS  PubMed  Google Scholar 

  28. Tan, G. M., Arnone, D., McIntosh, A. M. & Ebmeier, K. P. Meta-analysis of magnetic resonance imaging studies in chromosome 22q11.2 deletion syndrome (velocardiofacial syndrome). Schizophr. Res. 115, 173–181 (2009)

    Article  PubMed  Google Scholar 

  29. Linkersdörfer, J., Lonnemann, J., Lindberg, S., Hasselhorn, M. & Fiebach, C. J. Grey matter alterations co-localize with functional abnormalities in developmental dyslexia: an ALE meta-analysis. PLoS ONE 7, e43122 (2012)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  30. Rotzer, S. et al. Optimized voxel-based morphometry in children with developmental dyscalculia. Neuroimage 39, 417–422 (2008)

    Article  CAS  PubMed  Google Scholar 

  31. Hall, R. C. Global assessment of functioning. A modified scale. Psychosomatics 36, 267–275 (1995)

    Article  CAS  PubMed  Google Scholar 

  32. Wechsler, D. Wechsler Memory Scale 3rd edn (Harcourt Brace and Company, 1997)

    Google Scholar 

  33. Benton, A. H. K. Multilingual Aphasia Examination (AJA Associates, 1989)

    Google Scholar 

  34. Morris, J. C. et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer's disease. Neurology 39, 1159–1165 (1989)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  35. Stroop, J. R. Studies of interference in seral verbal reactions. J. Exp. Psychol. 18, 643–662 (1935)

    Article  Google Scholar 

  36. Reitan, R. M. Validity of the trail making test as an indicator of organic brain damage. Percept. Mot. Skills 8, 271–276 (1958)

    Article  Google Scholar 

  37. Berg, E. A. A simple objective test for measuring flexibility in thinking. J. Gen. Psychol. 39, 15–22 (1948)

    Article  CAS  PubMed  Google Scholar 

  38. Owen, A. M., Downes, J. J., Sahakian, B. J., Polkey, C. E. & Robbins, T. W. Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia 28, 1021–1034 (1990)

    Article  CAS  PubMed  Google Scholar 

  39. Sahakian, B., Jones, G., Levy, R., Gray, J. & Warburton, D. The effects of nicotine on attention, information processing, and short-term memory in patients with dementia of the Alzheimer type. Brit. J. Psychiatry 154, 797–800 (1989)

    Article  CAS  Google Scholar 

  40. Wechsler, D. Wechsler Abbreviated Scale of Intelligence (Harcourt Brace and Company, 1999)

    Google Scholar 

  41. Wang, K. et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 17, 1665–1674 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hall, R. C. & Parks, J. The modified global assessment of functioning scale: addendum. Psychosomatics 36, 416–417 (1995)

    Article  CAS  PubMed  Google Scholar 

  43. Golden, C. J. The Stroop color word test (Stoelting Company, 1978)

    Google Scholar 

  44. Heaton, R., Chelune, G., Talley, J., Kay, G. & Curtis, G. Wisconsin Card Sorting Test manual (Psychological Assessment Resources, 1993)

    Google Scholar 

  45. Feigenbaum, J. D., Polkey, C. E. & Morris, R. G. Deficits in spatial working memory after unilateral temporal lobectomy in man. Neuropsychologia 34, 163–176 (1996)

    Article  CAS  PubMed  Google Scholar 

  46. Ashburner, J. & Friston, K. J. Unified segmentation. Neuroimage 26, 839–851 (2005)

    Article  PubMed  Google Scholar 

  47. Manjón, J. V., Coupe, P., Marti-Bonmati, L., Collins, D. L. & Robles, M. Adaptive non-local means denoising of MR images with spatially varying noise levels. J. Magn. Reson. Imaging 31, 192–203 (2010)

    Article  PubMed  Google Scholar 

  48. Ashburner, J. A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113 (2007)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the participants and we thank the research nurses and staff at the Krókháls recruitment centre and roentgentechnicians at Röntgen Domus. We also thank the staff at deCODE genetics core facilities and all our colleagues for their important contribution to this work. The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EU funded FP7-People-2011-IAPP grant PsychDPC (GA 286213).

Author information

Authors and Affiliations

Authors

Contributions

H.St., A.M-L., S.S., B.M., S.A., G.B., G.B.W., M.D., T.B.S., M.B., S. Ka., J.H., S.H., E.Sa., E.Si. and K.S. were involved in study design. B.M., S.A., G.A.J., S. Kr., H.Sn., S.R.D., B.S., I.H., M.H., B.J., J.G.H., S.H., E.Sa. and E.Si. were involved with cohort ascertainment, phenotypic characterization and recruitment. H.St., K.M., G.B., G.B.W., O.M.D., H.T., O.G., G.F.J., J.H.T and L.J.G. were involved with informatics and data management. H.St., A.M-L., S.S., K.M., G.B., G.B.W., O.M.D., H.T., O.G., M.B. and A.J.S. carried out statistical analysis. H.St., A.M-L., S.S., B.M., K.M., S.A., G.B., G.B.W., G.A.J., O.M.D., H.T., O.G., S. Kr., H.Sn., S.R.D., L.J.G., G.F.J., B.S., I.H., M.H., B.J., J.H.T., M.D., T.B.S., M.B., S. Ka., J.G.H., S.H., E.Sa., E.Si. and K.S. wrote the manuscript.

Corresponding authors

Correspondence to Andreas Meyer-Lindenberg or Kari Stefansson.

Ethics declarations

Competing interests

H.St., S.S., S.A., G.B., G.B.W., G.J., S. Kr., H.Sn., S.R.D., L.J.G., G.F.J., B.S. and K.S. are employees of deCODE genetics/Amgen. B.J. is an employee of Röntgen domus. A.J.S. is an employee of Eli Lilly and Company. M.D. and T.B.S. are employees of H. Lundbeck A/S.

Additional information

The authors declare competing financial interests: details are available in the online version of the paper.

Supplementary information

Supplementary Information

This file contains Supplementary Figure 1, Supplementary Tables 1-7 and Supplementary References. (PDF 409 kb)

Supplementary Data

This file contains Supplementary Table 8. (XLSX 23 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefansson, H., Meyer-Lindenberg, A., Steinberg, S. et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature 505, 361–366 (2014). https://doi.org/10.1038/nature12818

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12818

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing