Myocardial infarction, a leading cause of death in the Western world1, usually occurs when the fibrous cap overlying an atherosclerotic plaque in a coronary artery ruptures. The resulting exposure of blood to the atherosclerotic material then triggers thrombus formation, which occludes the artery2. The importance of genetic predisposition to coronary artery disease and myocardial infarction is best documented by the predictive value of a positive family history3. Next-generation sequencing in families with several affected individuals has revolutionized mutation identification4. Here we report the segregation of two private, heterozygous mutations in two functionally related genes, GUCY1A3 (p.Leu163Phefs*24) and CCT7 (p.Ser525Leu), in an extended myocardial infarction family. GUCY1A3 encodes the α1 subunit of soluble guanylyl cyclase (α1-sGC)5, and CCT7 encodes CCTη, a member of the tailless complex polypeptide 1 ring complex6, which, among other functions, stabilizes soluble guanylyl cyclase. After stimulation with nitric oxide, soluble guanylyl cyclase generates cGMP, which induces vasodilation and inhibits platelet activation7. We demonstrate in vitro that mutations in both GUCY1A3 and CCT7 severely reduce α1-sGC as well as β1-sGC protein content, and impair soluble guanylyl cyclase activity. Moreover, platelets from digenic mutation carriers contained less soluble guanylyl cyclase protein and consequently displayed reduced nitric-oxide-induced cGMP formation. Mice deficient in α1-sGC protein displayed accelerated thrombus formation in the microcirculation after local trauma. Starting with a severely affected family, we have identified a link between impaired soluble-guanylyl-cyclase-dependent nitric oxide signalling and myocardial infarction risk, possibly through accelerated thrombus formation. Reversing this defect may provide a new therapeutic target for reducing the risk of myocardial infarction.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


Data deposits

Variant data is available in ClinVar ( with accession numbers SCV000083870 for NM_001130683.2:c.488dup and SCV000083871 for NM_001166284.1:c.1313C>T.


  1. 1.

    World Health Organization. The top 10 causes of death. Fact sheet no. 310; (2011)

  2. 2.

    , , , & Concept of vulnerable/unstable plaque. Arterioscler. Thromb. Vasc. Biol. 30, 1282–1292 (2010)

  3. 3.

    et al. Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: a prospective study of parents and offspring. J. Am. Med. Assoc. 291, 2204–2211 (2004)

  4. 4.

    et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nature Rev. Genet. 12, 745–755 (2011)

  5. 5.

    , , , & Spare guanylyl cyclase NO receptors ensure high NO sensitivity in the vascular system. J. Clin. Invest. 116, 1731–1737 (2006)

  6. 6.

    et al. The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure 20, 814–825 (2012)

  7. 7.

    , , & Human soluble guanylate cyclase: functional expression and revised isoenzyme family. Biochem. J. 335, 51–57 (1998)

  8. 8.

    The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010)

  9. 9.

    et al. cGMP mediates the vascular and platelet actions of nitric oxide: confirmation using an inhibitor of the soluble guanylyl cyclase. Proc. Natl Acad. Sci. USA 93, 1480–1485 (1996)

  10. 10.

    et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nature Genet. 45, 25–33 (2013)

  11. 11.

    et al. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nature Genet. 44, 890–894 (2012)

  12. 12.

    , & Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation 123, 2263–2273 (2011)

  13. 13.

    et al. A comprehensive linkage analysis for myocardial infarction and its related risk factors. Nature Genet. 30, 210–214 (2002)

  14. 14.

    et al. Distinct heritable patterns of angiographic coronary artery disease in families with myocardial infarction. Circulation 111, 855–862 (2005)

  15. 15.

    et al. A method and server for predicting damaging missense mutations. Nature Methods 7, 248–249 (2010)

  16. 16.

    Linkage strategies for genetically complex traits. III. The effect of marker polymorphism on analysis of affected relative pairs. Am. J. Hum. Genet. 46, 242–253 (1990)

  17. 17.

    et al. The crystal structure of yeast CCT reveals intrinsic asymmetry of eukaryotic cytosolic chaperonins. EMBO J. 30, 3078–3090 (2011)

  18. 18.

    et al. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins 77, 114–122 (2009)

  19. 19.

    , , , & Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 57, 678–683 (2004)

  20. 20.

    , , & Fast empirical pKa prediction by Ewald summation. J. Mol. Graph. Model. 25, 481–486 (2006)

  21. 21.

    , , & Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis. Proc. Natl Acad. Sci. USA 94, 13414–13419 (1997)

  22. 22.

    , , , & Prominent role of KCa3.1 in endothelium-derived hyperpolarizing factor-type dilations and conducted responses in the microcirculation in vivo. Cardiovasc. Res. 82, 476–483 (2009)

  23. 23.

    et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nature Genet. 43, 333–338 (2011)

  24. 24.

    , , , & Alcoholism-related phenotypes and genetic variants of the CB1 receptor. Eur. Arch. Psychiatry Clin. Neurosci. 253, 275–280 (2003)

  25. 25.

    et al. Cholesteryl ester transfer protein and mortality in patients undergoing coronary angiography: the Ludwigshafen Risk and Cardiovascular Health study. Circulation 121, 366–374 (2010)

  26. 26.

    et al. Overweight, physical activity, tobacco and alcohol consumption in a cross-sectional random sample of German adults. BMC Public Health 6, 233 (2006)

  27. 27.

    et al. Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation 117, 1675–1684 (2008)

  28. 28.

    , , , & A new multipoint method for genome-wide association studies by imputation of genotypes. Nature Genet. 39, 906–913 (2007)

Download references


We thank all the family members who participated in this research. Without the continuous support of these patients over more than 15 years, the present work would not have been possible. We would like to thank S. Wrobel, S. Stark, A. Liebers, K. Franke, J. Stegmann-Frehse, M. Behrensen, M. Schmid, J. Eckhold, D. Wöllner, U. Krabbe and J. Simon for technical assistance. Furthermore, we would like to thank M. Becker, N. Buchholz, I. Demuth, R. Eckardt, H. Heekeren, U. Lindenberger, M. Lövdén, L. Müller, W. Nietfeld, G. Pawelec, F. Schmiedeck, T. Siedler and G. G. Wagner for their contributions to BASE-II. We also would like to thank S. Herterich and S. Gambaryan for advice, and B. Mayer, U. Hubauer, K.-H. Ameln and A. Großhennig for help with GerMIFS. We thank WTCCC+ and the WTCCC-CAD2 investigators for access to their data. The study is supported by the Deutsche Forschungsgemeinschaft and the German Federal Ministry of Education and Research (BMBF) in the context of the German National Genome Research Network (NGFN-2 (01GS0417) and NGFN-plus (01GS0832)), the FP6 and FP7 EU-funded integrated projects Cardiogenics (LSHM-CT-2006-037593), ENGAGE (201413), and GEUVADIS (261123), the binational BMBF/ANR funded project CARDomics (01KU0908A), the local focus programs ‘Kardiovaskuläre Genomforschung’ and ‘Medizinische Genetik’ of the Universität zu Lübeck, and the University Hospital of Regensburg, Germany. The German Federal Ministry for Education and Research provided funding for BASE-II (BMBF; grant no. 16SV5538). Support by NSFC grant 30730057 from the Chinese Government (to J.O.) is gratefully acknowledged. N.J.S. holds a Chair funded by the British Heart Foundation, and is supported by the Leicester NIHR Biomedical Research Unit in Cardiovascular Disease. U.W. is supported by the BMBF (01EO1003). M.M.N. is a member of the DFG-funded Excellence Cluster ImmunoSensation.

Author information

Author notes

    • Jeanette Erdmann
    • , Klaus Stark
    • , Ulrike B. Esslinger
    •  & Philipp Moritz Rumpf

    These authors contributed equally to this work.


  1. Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, 23562 Lübeck, Germany

    • Jeanette Erdmann
    • , Anja Medack
    • , Stephanie Tennstedt
    • , Zouhair Aherrahrou
    • , Janja Nahrstaedt
    • , Christina Willenborg
    • , Petra Bruse
    •  & Ingrid Brænne
  2. German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany

    • Jeanette Erdmann
    • , Cor de Wit
    • , Frank J. Kaiser
    • , Zouhair Aherrahrou
    •  & Christina Willenborg
  3. Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, 93053 Regensburg, Germany

    • Klaus Stark
    • , Ulrike B. Esslinger
    • , Marcus Fischer
    •  & Martina E. Zimmermann
  4. Department of Genetic Epidemiology, University of Regensburg, 93053 Regensburg, Germany

    • Klaus Stark
  5. Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S937 Paris, France

    • Ulrike B. Esslinger
  6. Deutsches Herzzentrum München and 1. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, 80636 München, Germany

    • Philipp Moritz Rumpf
    • , Wibke Reinhard
    • , Christof Burgdorf
    • , Thomas Meitinger
    • , Christian Hengstenberg
    •  & Heribert Schunkert
  7. German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany

    • Philipp Moritz Rumpf
    • , Wibke Reinhard
    • , Christian Hengstenberg
    •  & Heribert Schunkert
  8. Department of Pharmacology and Toxicology, Ruhr-University Bochum, 44801 Bochum, Germany

    • Doris Koesling
    •  & Evanthia Mergia
  9. Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany

    • Cor de Wit
  10. Institut für Humangenetik, Universität zu Lübeck, 23562 Lübeck, Germany

    • Frank J. Kaiser
    •  & Diana Braunholz
  11. Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany

    • Elisabeth Graf
    • , Sebastian Eck
    • , Tim M. Strom
    •  & Thomas Meitinger
  12. Institute of Human Genetics, Technische Universität München, 81675 München, Germany

    • Elisabeth Graf
    • , Sebastian Eck
    • , Tim M. Strom
    •  & Thomas Meitinger
  13. Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany

    • Markus M. Nöthen
    •  & Per Hofmann
  14. Department of Genomics, Research Center Life & Brain, University of Bonn, 53127 Bonn, Germany

    • Markus M. Nöthen
  15. Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, 4003 Basel, Switzerland

    • Per Hofmann
  16. Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK

    • Peter S. Braund
    •  & Nilesh J. Samani
  17. Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester LE1 7RH, UK

    • Peter S. Braund
    •  & Nilesh J. Samani
  18. Institute of Clinical Molecular Biology, Christian-Albrecht-Universität, 24105 Kiel, Germany

    • Stefan Schreiber
  19. Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, UK

    • Anthony J. Balmforth
  20. Division of Cardiovascular and Neuronal Remodelling, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, UK

    • Alistair S. Hall
  21. Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany

    • Lars Bertram
  22. Charité Research Group on Geriatrics, Charité-Universitätsmedizin, 10117 Berlin, Germany

    • Elisabeth Steinhagen-Thiessen
  23. Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany

    • Shu-Chen Li
  24. Department of Psychology, TU Dresden, 01062 Dresden, Germany

    • Shu-Chen Li
  25. Synlab Academy and Business Development, synlab Services GmbH, 68165 Mannheim, Germany

    • Winfried März
  26. Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria

    • Winfried März
  27. Medical Clinic V, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany

    • Winfried März
  28. The Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

    • Muredach Reilly
  29. Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts 02215, USA

    • Sekar Kathiresan
  30. Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02215, USA

    • Sekar Kathiresan
  31. Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02215, USA

    • Sekar Kathiresan
  32. University of Ottawa, Heart Institute, Ottawa, Ontario K1Y 4W7, Canada

    • Ruth McPherson
  33. Centrum für Thrombose und Hämostase (CTH), Universitätsmedizin Mainz, 55131 Mainz, Germany

    • Ulrich Walter
  34. German Centre for Cardiovascular Research (DZHK), partner site RheinMain, 55131 Mainz, Germany

    • Ulrich Walter
  35. Institute of Psychology, Chinese Academy of Sciences, Beijing 100864, China

    • Jurg Ott
  36. Laboratory of Statistical Genetics, Rockefeller University, New York 10065, USA

    • Jurg Ott



    A list of authors and their affiliations appears in the Supplementary Information.


  1. Search for Jeanette Erdmann in:

  2. Search for Klaus Stark in:

  3. Search for Ulrike B. Esslinger in:

  4. Search for Philipp Moritz Rumpf in:

  5. Search for Doris Koesling in:

  6. Search for Cor de Wit in:

  7. Search for Frank J. Kaiser in:

  8. Search for Diana Braunholz in:

  9. Search for Anja Medack in:

  10. Search for Marcus Fischer in:

  11. Search for Martina E. Zimmermann in:

  12. Search for Stephanie Tennstedt in:

  13. Search for Elisabeth Graf in:

  14. Search for Sebastian Eck in:

  15. Search for Zouhair Aherrahrou in:

  16. Search for Janja Nahrstaedt in:

  17. Search for Christina Willenborg in:

  18. Search for Petra Bruse in:

  19. Search for Ingrid Brænne in:

  20. Search for Markus M. Nöthen in:

  21. Search for Per Hofmann in:

  22. Search for Peter S. Braund in:

  23. Search for Evanthia Mergia in:

  24. Search for Wibke Reinhard in:

  25. Search for Christof Burgdorf in:

  26. Search for Stefan Schreiber in:

  27. Search for Anthony J. Balmforth in:

  28. Search for Alistair S. Hall in:

  29. Search for Lars Bertram in:

  30. Search for Elisabeth Steinhagen-Thiessen in:

  31. Search for Shu-Chen Li in:

  32. Search for Winfried März in:

  33. Search for Muredach Reilly in:

  34. Search for Sekar Kathiresan in:

  35. Search for Ruth McPherson in:

  36. Search for Ulrich Walter in:

  37. Search for Jurg Ott in:

  38. Search for Nilesh J. Samani in:

  39. Search for Tim M. Strom in:

  40. Search for Thomas Meitinger in:

  41. Search for Christian Hengstenberg in:

  42. Search for Heribert Schunkert in:


J.E., C.H., F.J.K., T.M., N.J.S., H.S. and K.S. designed the study. Z.A., D.B., P.B., C.d.W., S.E., U.B.E., E.G., F.J.K., D.K., A.M., E.M., W.R., P.M.R., T.M.S. and M.E.Z. conducted the experiments. I.B., M.F., J.N., J.O., K.S., T.M.S., S.T. and C.W. analysed the data. A.J.B., L.B., P.S.B., C.B., A.S.H., P.H., S.K., S.-C.L., W.M., R.M., T.M., M.M.N., M.R., N.J.S., S.S., E.S.-T. and U.W. provided material, data and analysis tools. J.E., C.d.W., C.H., F.J.K., N.J.S. and H.S. wrote the paper. C.H. and H.S. contributed equally. See Supplementary Information for Members of CARDIoGRAM.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Jeanette Erdmann or Christian Hengstenberg.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Materials and Methods, Supplementary Tables 1-7, Supplementary Figures 1-8 and funding and affiliation details for CARDIoGRAM.


  1. 1.

    Thrombus formation in arterioles in vivo

    An arteriole in cremaster-microcirculation with a diameter of about 40 µm. Blood flow is from bottom to top, the animal has received high molecular weight FITC-dextran intravenously which is photoexcited by illuminating the preparation at 450-490nm using mercury lamp at time point 01:07:00. This is visible as a light spot in arteriole, which reflects the excitation of the dye. Thrombus formation starts to be visible downstream of the excitated area in the upper right corner 42 s later. Thereafter, flow decelerates and comes to complete stop 88 s after starting the photoexcitation, which is turned-off at this point.

About this article

Publication history





Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.