Structural change in molten basalt at deep mantle conditions

Abstract

Silicate liquids play a key part at all stages of deep Earth evolution, ranging from core and crust formation billions of years ago to present-day volcanic activity. Quantitative models of these processes require knowledge of the structural changes and compression mechanisms that take place in liquid silicates at the high pressures and temperatures in the Earth’s interior. However, obtaining such knowledge has long been impeded by the challenging nature of the experiments. In recent years, structural and density information for silica glass was obtained at record pressures of up to 100 GPa (ref. 1), a major step towards obtaining data on the molten state. Here we report the structure of molten basalt up to 60 GPa by means of in situ X-ray diffraction. The coordination of silicon increases from four under ambient conditions to six at 35 GPa, similar to what has been reported in silica glass1,2,3. The compressibility of the melt after the completion of the coordination change is lower than at lower pressure, implying that only a high-order equation of state can accurately describe the density evolution of silicate melts over the pressure range of the whole mantle. The transition pressure coincides with a marked change in the pressure-evolution of nickel partitioning between molten iron and molten silicates, indicating that melt compressibility controls siderophile-element partitioning.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structure of molten basalt at high pressures.
Figure 2: Pressure evolution of Si–O coordination number and dSi−O in molten basalt.
Figure 3: Density of molten basalt as a function of pressure.
Figure 4: Pressure evolution of nickel partitioning coefficient between metal and silicate melts.

References

  1. 1

    Sato, T. & Funamori, N. Sixfold-coordinated amorphous polymorph of SiO2 under high pressure. Phys. Rev. Lett. 101, 255502 (2008)

    ADS  Article  Google Scholar 

  2. 2

    Meade, C., Hemley, R. J. & Mao, H. K. High-pressure x-ray diffraction of SiO2 glass. Phys. Rev. Lett. 69, 1387–1390 (1992)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Benmore, C. J. et al. Structural and topological changes in silica glass at pressure. Phys. Rev. B 81, 054105 (2010)

    ADS  Article  Google Scholar 

  4. 4

    Rigden, S. M., Ahrens, T. J. & Stolper, E. M. Densities of liquid silicate at high pressures. Science 226, 1071–1074 (1984)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Agee, C. B. Crystal-liquid density inversions in terrestrial and lunar magmas. Phys. Earth Planet. Inter. 107, 63–74 (1998)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Ohtani, E. & Maeda, M. Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle. Earth Planet. Sci. Lett. 193, 69–75 (2001)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Funamori, N., Yamamoto, S., Yagi, T. & Kikegawa, T. Exploratory studies of silicate melt structure at high pressures and temperatures by in situ X-ray diffraction. J. Geophys. Res. 109, B03203 (2004)

    ADS  Article  Google Scholar 

  8. 8

    Asimow, P. D. & Ahrens, T. Shock compression of liquid silicates up to 125 GPa: the anorthite–diopside join. J. Geophys. Res. 115, B10209 (2010)

    ADS  Article  Google Scholar 

  9. 9

    Hirose, K., Fei, Y., Ma, Y. & Mao, H.-K. The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397, 53–56 (1999)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Perrillat, J.-P. et al. Phase transformations of subducted basaltic crust in the upmost lower mantle. Phys. Earth Planet. Inter. 157, 139–149 (2006)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Ricolleau, A. et al. Phase relations and equation of state of a natural MORB: implications for the density profile of subducted oceanic crust in the Earth’s lower mantle. J. Geophys. Res. 115, B08202 (2010)

    ADS  Article  Google Scholar 

  12. 12

    Sato, T. & Funamori, N. High-pressure structural transformation of SiO2 glass up to 100 GPa. Phys. Rev. B 82, 184102 (2010)

    ADS  Article  Google Scholar 

  13. 13

    Yarger, J. L. et al. Al coordination changes in high-pressure aluminosilicate liquids. Science 270, 1964–1967 (1995)

    ADS  CAS  Article  Google Scholar 

  14. 14

    de Koker, N. Structure, thermodynamics, and diffusion in CaAl2Si2O8 liquid from first-principles molecular dynamics. Geochim. Cosmochim. Acta 74, 5657–5671 (2010)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Sun, N., Stixrude, L., de Koker, N. & Karki, B. B. First principles molecular dynamics simulations of diopside (CaMgSi2O6) liquid to high pressure. Geochim. Cosmochim. Acta 75, 3792–3802 (2011)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Karki, B. B., Bhattarai, D. & Strixrude, L. First-principles simulations of liquid silica: structural and dynamical behavior at high pressure. Phys. Rev. B 76, 104205 (2007)

    ADS  Article  Google Scholar 

  17. 17

    Murakami, M. & Bass, J. D. Evidence of denser MgSiO3 glass above 133 gigapascal (GPa) and implications for remnants of ultradense silicate melt from a deep magma ocean. Proc. Natl Acad. Sci. USA 108, 17286–17289 (2011)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Eggert, J. H., Weck, G., Loubeyre, P. & Mezouar, M. Quantitative structure factor and density measurements of high-pressure in diamond anvil cells by x-ray diffraction: argon and water. Phys. Rev. B 65, 174105 (2002)

    ADS  Article  Google Scholar 

  19. 19

    Sanloup, C., Gregoryanz, E., Degtyareva, O. & Hanfland, M. Structural transition in compressed amorphous sulfur. Phys. Rev. Lett. 100, 075701 (2008)

    ADS  Article  Google Scholar 

  20. 20

    Stixrude, L. & Karki, B. Structure and freezing of MgSiO3 liquid in Earth’s lower mantle. Science 310, 297–299 (2005)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Sanloup, C. et al. Structure and density of molten fayalite at high pressure. Geochim. Cosmochim. Acta 118, 118–128 (2013)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Lee, C.-T. A. et al. Upside-down differentiation and generation of a ‘primordial’ lower mantle. Nature 463, 930–933 (2010)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Thibault, Y. & Walter, M. J. The influence of pressure and temperature on the metal-silicate partition cofficients of nickel and cobalt in a model C1 chondrite and implications for metal segregation in a deep magma ocean. Geochim. Cosmochim. Acta 59, 991–1002 (1995)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Li, J. & Agee, C. B. Geochemistry of mantle–core differentiation at high pressure. Nature 381, 686–689 (1996)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Ohtani, E. & Yurimoto, H. Element partitioning between metallic liquid, magnesiowustite, and silicate liquid at 20 GPa and 2500°C: a secondary ion mass spectrometric study. Geophys. Res. Lett. 23, 1993–1996 (1996)

    ADS  CAS  Article  Google Scholar 

  27. 27

    O'Neill, H. S. C., Canil, D. & Rubie, D. C. Oxide-metal equilibria to 2500°C and 25 GPa: implications for core formation and the light component in the Earth’s core. J. Geophys. Res. 103, 12239–12260 (1998)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Tschauner, O. et al. Partitioning of nickel and cobalt between silicate perovskite and metal at pressures up to 80 GPa. Nature 398, 604–607 (1999)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Siebert, J., Badro, J., Antonangeli, D. & Ryerson, F. J. Metal–silicate partitioning of Ni and Co in a deep magma ocean. Earth Planet. Sci. Lett. 321–322, 189–197 (2012)

    ADS  Article  Google Scholar 

  30. 30

    Sanloup, C., van Westrenen, W., Dasgupta, R., Maynard-Casely, H. E. & Perrillat, J.-P. Compressibility change in iron-rich melt and implications for core formation models. Earth Planet. Sci. Lett. 306, 118–122 (2011)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Farges, F., Brown, G. E., Petit, P.-E. & Munoz, M. Transition elements in water-bearing silicate glasses/melts. Part I. A high-resolution and anharmonic analysis of Ni coordination environments in crystals, glasses, and melts. Geochim. Cosmochim. Acta 65, 1665–1678 (2001)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Keppler, H. & Rubie, D. C. Pressure-induced coordination changes of transition-metal ions in silicate melts. Nature 364, 54–56 (1993)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981)

    ADS  Article  Google Scholar 

  34. 34

    Pichavant, M., di Carlo, I., Gac, Y. L., Rotolo, S. G. & Scaillet, B. Experimental constraints on the deep magma feeding system at Stromboli volcano, Italy. J. Petrol. 50, 601–624 (2009)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Mao, H. K., Xu, J. & Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 91, 4673–4676 (1986)

    ADS  CAS  Article  Google Scholar 

  36. 36

    Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Hausermann, D. Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press. Res. 14, 235–248 (1996)

    ADS  Article  Google Scholar 

  37. 37

    Nishihara, Y., Nakayama, K., Takahashi, E., Iguchi, T. & Funakoshi, K.-I. P-V-T equation of state of stishovite to the mantle transition zone conditions. Phys. Chem. Mineral. 31, 660–670 (2005)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Hosemann, R. & Bagchi, S. N. Direct Analysis of Diffraction by Matter (North-Holland, 1962)

    Google Scholar 

  39. 39

    de Koker, N. P. & Stixrude, L. Self-consistent thermodynamic description of silicate liquids, with application to shock melting of MgO periclase and MgSiO3 perovskite. Geophys. J. Int. 178, 162–179 (2009)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant numbers 312284 and 259649 (European Research Council starting grant to C.S.). The laser heating system on beamline P02.2 is funded by the BMBF (the German Federal Ministry of Education and Research, project number 05K10RFA). We acknowledge G. Prouteau for providing the starting basalt glass, and PETRAIII for provision of synchrotron radiation facilities.

Author information

Affiliations

Authors

Contributions

C.S. devised the project, and wrote the paper with input from J.W.E.D., Z.K. and W.v.W. Also, C.S., J.W.E.D., Z.K., P.D.-S., D.M.M., N.R. and W.v.W. participated in data acquisition. Z.K. and W.M. designed the laser-heating system used during the experiments.

Corresponding author

Correspondence to Chrystèle Sanloup.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Table 1 Chemical composition of the starting sample and recovered samples

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sanloup, C., Drewitt, J., Konôpková, Z. et al. Structural change in molten basalt at deep mantle conditions. Nature 503, 104–107 (2013). https://doi.org/10.1038/nature12668

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing