Synthetic non-oxidative glycolysis enables complete carbon conservation

Abstract

Glycolysis, or its variations, is a fundamental metabolic pathway in life that functions in almost all organisms to decompose external or intracellular sugars. The pathway involves the partial oxidation and splitting of sugars to pyruvate, which in turn is decarboxylated to produce acetyl-coenzyme A (CoA) for various biosynthetic purposes. The decarboxylation of pyruvate loses a carbon equivalent, and limits the theoretical carbon yield to only two moles of two-carbon (C2) metabolites per mole of hexose. This native route is a major source of carbon loss in biorefining and microbial carbon metabolism. Here we design and construct a non-oxidative, cyclic pathway that allows the production of stoichiometric amounts of C2 metabolites from hexose, pentose and triose phosphates without carbon loss. We tested this pathway, termed non-oxidative glycolysis (NOG), in vitro and in vivo in Escherichia coli. NOG enables complete carbon conservation in sugar catabolism to acetyl-CoA, and can be used in conjunction with CO2 fixation1 and other one-carbon (C1) assimilation pathways2 to achieve a 100% carbon yield to desirable fuels and chemicals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structure of oxidative (EMP) and non-oxidative glycolysis (NOG).
Figure 2: Three FBP-dependent NOG networks.
Figure 3: In vitro NOG.
Figure 4: In vivo conversion of xylose to acetate using NOG.

Change history

  • 30 September 2013

    Panel labels b and c were assigned to the wrong panels in Fig. 4 and have been corrected.

  • 30 October 2013

    Author affiliations and a text citation to Fig. 1a have been corrected, and a minor change to Fig. 1 has been made.

References

  1. 1

    Bassham, J. et al. The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J. Am. Chem. Soc. 76, 1760–1770 (1954)

    CAS  Article  Google Scholar 

  2. 2

    Yurimoto, H., Kato, N. & Sakai, Y. Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism. Chem. Rec. 5, 367–375 (2005)

    CAS  Article  Google Scholar 

  3. 3

    Nelson, D. & Cox, M. Lehninger Principles of Biochemistry (W. H. Freeman, 2005)

    Google Scholar 

  4. 4

    Peekhaus, N. & Conway, T. What’s for dinner?: Entner-Doudoroff metabolism in Escherichia coli . J. Bacteriol. 180, 3495–3502 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Guterl, J.-K. et al. Cell-free metabolic engineering: production of chemicals by minimized reaction cascades. ChemSusChem 5, 2165–2172 (2012)

    CAS  Article  Google Scholar 

  6. 6

    Ye, X. et al. Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway. Microb. Cell Fact. 11, 120 (2012)

    CAS  Article  Google Scholar 

  7. 7

    Causey, T. & Ingram, L. Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc. Natl Acad. Sci. USA 100, 825–832 (2003)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Tao, H., Gonzalez, R., Martinez, A. & Ingram, L. Engineering a homo-ethanol pathway in Escherichia coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation. J. Bacteriol. 183, 2979–2988 (2001)

    CAS  Article  Google Scholar 

  9. 9

    Berg, I. A., Kockelkorn, D., Buckel, W. & Fuchs, G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318, 1782–1786 (2007)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Ragsdale, S. W. & Pierce, E. Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta 1784, 1873–1898 (2008)

    CAS  Article  Google Scholar 

  11. 11

    Dugar, D. & Stephanopoulos, G. Relative potential of biosynthetic pathways for biofuels and bio-based products. Nature Biotechnol. 29, 1074–1078 (2011)

    CAS  Article  Google Scholar 

  12. 12

    Meléndez-Hevia, E. & Isidoro, A. The game of the pentose phosphate cycle. J. Theor. Biol. 117, 251–263 (1985)

    Article  Google Scholar 

  13. 13

    Liao, J. C., Hou, S.-Y. & Chao, Y.-P. Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. Biotechnol. Bioeng. 52, 129–140 (1996)

    CAS  Article  Google Scholar 

  14. 14

    Schuster, R. & Schuster, S. Refined algorithm and computer program for calculating all non-negative fluxes admissible in steady states of biochemical reaction systems with or without some flux. Comput. Appl. Biosci. 9, 79–85 (1993)

    CAS  PubMed  Google Scholar 

  15. 15

    Daldal, F. & Fraenkel, D. Assessment of a futile cycle involving reconversion of fructose 6-phosphate to fructose 1, 6-bisphosphate during gluconeogenic growth of Escherichia coli . J. Bacteriol. 153, 390–394 (1983)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Patnaik, R., Roof, W. D., Young, R. F. & Liao, J. C. Stimulation of glucose catabolism in Escherichia coli by a potential futile cycle. J. Bacteriol. 174, 7527–7532 (1992)

    CAS  Article  Google Scholar 

  17. 17

    Roseman, S. & Meadow, N. D. Signal transduction by the bacterial phosphotransferase system. J. Biol. Chem. 265, 2993–2996 (1990)

    CAS  PubMed  Google Scholar 

  18. 18

    Gonzalez, R., Tao, H., Shanmugam, K. T., York, S. W. & Ingram, L. O. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Biotechnol. Prog. 18, 6–20 (2002)

    CAS  Article  Google Scholar 

  19. 19

    Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1–I2 regulatory elements. Nucleic Acids Res. 25, 1203 (1997)

    CAS  Article  Google Scholar 

  20. 20

    Atsumi, S. et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10, 305–311 (2008)

    CAS  Article  Google Scholar 

  21. 21

    Li, H. et al. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335, 1596 (2012)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Gronenberg, L. S., Marcheschi, R. J. & Liao, J. C. Next generation biofuel engineering in prokaryotes. Curr. Opin. Chem. Biol. 17, 462–471 (2013)

    CAS  Article  Google Scholar 

  23. 23

    Liu, L. et al. Phosphoketolase pathway for xylose catabolism in Clostridium acetobutylicum revealed by 13C-metabolic flux analysis. J. Bacteriol. 194, 5413–5422 (2012)

    CAS  Article  Google Scholar 

  24. 24

    Yin, X., Chambers, J. R., Barlow, K., Park, A. S. & Wheatcroft, R. The gene encoding xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (xfp) is conserved among Bifidobacterium species within a more variable region of the genome and both are useful for strain identification. FEMS Microbiol. Lett. 246, 251–257 (2005)

    CAS  Article  Google Scholar 

  25. 25

    Drake, H. L. & Daniel, S. L. Physiology of the thermophilic acetogen Moorella thermoacetica . Res. Microbiol. 155, 869–883 (2004)

    Article  Google Scholar 

  26. 26

    Ragsdale, S. W. Metals and their scaffolds to promote difficult enzymatic reactions. Chem. Rev. 106, 3317–3337 (2006)

    CAS  Article  Google Scholar 

  27. 27

    Lan, E. I. & Liao, J. C. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc. Natl Acad. Sci. USA 109, 6018–6023 (2012)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Liu, X., Sheng, J. & Curtiss, R. Fatty acid production in genetically modified cyanobacteria. Proc. Natl Acad. Sci. USA 108, 6899–6904 (2011)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Tcherkez, G. G. B., Farquhar, G. D. & Andrews, T. J. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc. Natl Acad. Sci. USA 103, 7246–7251 (2006)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Aslanidis, C. & de Jong, P. J. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res. 18, 6069–6074 (1990)

    CAS  Article  Google Scholar 

  31. 31

    Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Science Foundation (NSF) grant MCB-1139318 and Department of Energy (DOE) grant DE0-SC0006698. I.W.B. was supported by NSF Integrative Graduate Education and Research Traineeship (IGERT) grant no. 0903720.

Author information

Affiliations

Authors

Contributions

I.W.B. and J.C.L. conceived the project, designed the experiments, analysed the data, and wrote the manuscript. I.W.B. performed experiments, and T.-S.L. assisted in experiments.

Corresponding author

Correspondence to James C. Liao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-8, Supplementary Tables 1-8 and additional references. (PDF 1153 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bogorad, I., Lin, T. & Liao, J. Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502, 693–697 (2013). https://doi.org/10.1038/nature12575

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing