A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex


Early sensory experience instructs the maturation of neural circuitry in the cortex1,2. This has been studied extensively in the primary visual cortex, in which loss of vision to one eye permanently degrades cortical responsiveness to that eye3,4, a phenomenon known as ocular dominance plasticity (ODP). Cortical inhibition mediates this process4,5,6, but the precise role of specific classes of inhibitory neurons in ODP is controversial. Here we report that evoked firing rates of binocular excitatory neurons in the primary visual cortex immediately drop by half when vision is restricted to one eye, but gradually return to normal over the following twenty-four hours, despite the fact that vision remains restricted to one eye. This restoration of binocular-like excitatory firing rates after monocular deprivation results from a rapid, although transient, reduction in the firing rates of fast-spiking, parvalbumin-positive (PV) interneurons, which in turn can be attributed to a decrease in local excitatory circuit input onto PV interneurons. This reduction in PV-cell-evoked responses after monocular lid suture is restricted to the critical period for ODP and appears to be necessary for subsequent shifts in excitatory ODP. Pharmacologically enhancing inhibition at the time of sight deprivation blocks ODP and, conversely, pharmacogenetic reduction of PV cell firing rates can extend the critical period for ODP. These findings define the microcircuit changes initiating competitive plasticity during critical periods of cortical development. Moreover, they show that the restoration of evoked firing rates of layer 2/3 pyramidal neurons by PV-specific disinhibition is a key step in the progression of ODP.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: L2/3 pyramidal neuron responsiveness and local circuit organization is unchanged 1 day after MD.
Figure 2: L2/3 PV responsiveness to visual stimuli is reduced after 1-day MD.
Figure 3: L2/3 PV local circuit organization is altered after 1-day MD.
Figure 4: Reducing PV-specific inhibition restores ODP after the closure of the critical period.


  1. 1

    Ko, H. et al. The emergence of functional microcircuits in visual cortex. Nature 496, 96–100 (2013)

    ADS  CAS  Article  Google Scholar 

  2. 2

    White, L. E. & Fitzpatrick, D. Vision and cortical map development. Neuron 56, 327–338 (2007)

    CAS  Article  Google Scholar 

  3. 3

    Wiesel, T. N. & Hubel, D. H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963)

    CAS  Article  Google Scholar 

  4. 4

    Levelt, C. N. & Hubener, M. Critical-period plasticity in the visual cortex. Annu. Rev. Neurosci. 35, 309–330 (2012)

    CAS  Article  Google Scholar 

  5. 5

    Hensch, T. K. Critical period plasticity in local cortical circuits. Nature Rev. Neurosci. 6, 877–888 (2005)

    CAS  Article  Google Scholar 

  6. 6

    Jiang, B., Huang, Z. J., Morales, B. & Kirkwood, A. Maturation of GABAergic transmission and the timing of plasticity in visual cortex. Brain Res. Brain Res. Rev. 50, 126–133 (2005)

    CAS  Article  Google Scholar 

  7. 7

    Fu, M. & Zuo, Y. Experience-dependent structural plasticity in the cortex. Trends Neurosci. 34, 177–187 (2011)

    CAS  Article  Google Scholar 

  8. 8

    Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nature Rev. Neurosci. 10, 647–658 (2009)

    CAS  Article  Google Scholar 

  9. 9

    Gordon, J. A. & Stryker, M. P. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J. Neurosci. 16, 3274–3286 (1996)

    CAS  Article  Google Scholar 

  10. 10

    Webber, A. L. & Wood, J. Amblyopia: prevalence, natural history, functional effects and treatment. Clin. Exp. Optom. 88, 365–375 (2005)

    Article  Google Scholar 

  11. 11

    Holmes, J. M. et al. Effect of age on response to amblyopia treatment in children. Arch. Ophthalmol. 129, 1451–1457 (2011)

    Article  Google Scholar 

  12. 12

    Kanonidou, E. Amblyopia: a mini review of the literature. Int. Ophthalmol. 31, 249–256 (2011)

    Article  Google Scholar 

  13. 13

    Shepherd, G. M. & Svoboda, K. Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. J. Neurosci. 25, 5670–5679 (2005)

    CAS  Article  Google Scholar 

  14. 14

    Yoshimura, Y. & Callaway, E. M. Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature Neurosci. 8, 1552–1559 (2005)

    CAS  Article  Google Scholar 

  15. 15

    Weiler, N., Wood, L., Yu, J., Solla, S. A. & Shepherd, G. M. Top-down laminar organization of the excitatory network in motor cortex. Nature Neurosci. 11, 360–366 (2008)

    CAS  Article  Google Scholar 

  16. 16

    Lambo, M. E. & Turrigiano, G. G. Synaptic and intrinsic homeostatic mechanisms cooperate to increase L2/3 pyramidal neuron excitability during a late phase of critical period plasticity. J. Neurosci. 33, 8810–8819 (2013)

    CAS  Article  Google Scholar 

  17. 17

    Letzkus, J. J. et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480, 331–335 (2011)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Harauzov, A. et al. Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J. Neurosci. 30, 361–371 (2010)

    CAS  Article  Google Scholar 

  19. 19

    Ferguson, S. M. et al. Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nature Neurosci. 14, 22–24 (2011)

    CAS  Article  Google Scholar 

  20. 20

    Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007)

    ADS  Article  Google Scholar 

  21. 21

    Dong, S., Allen, J. A., Farrell, M. & Roth, B. L. A chemical-genetic approach for precise spatio-temporal control of cellular signaling. Mol. Biosyst. 6, 1376–1380 (2010)

    CAS  Article  Google Scholar 

  22. 22

    Li, H. et al. Experience-dependent modification of a central amygdala fear circuit. Nature Neurosci. 16, 332–339 (2013)

    CAS  Article  Google Scholar 

  23. 23

    Alexander, G. M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63, 27–39 (2009)

    CAS  Article  Google Scholar 

  24. 24

    Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Kameyama, K. et al. Difference in binocularity and ocular dominance plasticity between GABAergic and excitatory cortical neurons. J. Neurosci. 30, 1551–1559 (2010)

    CAS  Article  Google Scholar 

  26. 26

    Gandhi, S. P., Yanagawa, Y. & Stryker, M. P. Delayed plasticity of inhibitory neurons in developing visual cortex. Proc. Natl Acad. Sci. USA 105, 16797–16802 (2008)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Yazaki-Sugiyama, Y., Kang, S., Cateau, H., Fukai, T. & Hensch, T. K. Bidirectional plasticity in fast-spiking GABA circuits by visual experience. Nature 462, 218–221 (2009)

    ADS  CAS  Article  Google Scholar 

  28. 28

    de Villers-Sidani, E. & Merzenich, M. M. Lifelong plasticity in the rat auditory cortex: basic mechanisms and role of sensory experience. Prog. Brain Res. 191, 119–131 (2011)

    Article  Google Scholar 

  29. 29

    Froemke, R. C., Merzenich, M. M. & Schreiner, C. E. A synaptic memory trace for cortical receptive field plasticity. Nature 450, 425–429 (2007)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Dombeck, D. A., Khabbaz, A. N., Collman, F., Adelman, T. L. & Tank, D. W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56, 43–57 (2007)

    CAS  Article  Google Scholar 

  31. 31

    Kuhlman, S. J., Tring, E. & Trachtenberg, J. T. Fast-spiking interneurons have an initial orientation bias that is lost with vision. Nature Neurosci. 14, 1121–1123 (2011)

    CAS  Article  Google Scholar 

  32. 32

    Xu, X., Olivas, N. D., Levi, R., Ikrar, T. & Nenadic, Z. High precision and fast functional mapping of cortical circuitry through a novel combination of voltage sensitive dye imaging and laser scanning photostimulation. J. Neurophysiol. 103, 2301–2312 (2010)

    Article  Google Scholar 

  33. 33

    Antonini, A., Fagiolini, M. & Stryker, M. P. Anatomical correlates of functional plasticity in mouse visual cortex. J. Neurosci. 19, 4388–4406 (1999)

    CAS  Article  Google Scholar 

  34. 34

    Suter, B. A. et al. Ephus: multipurpose data acquisition software for neuroscience experiments. Front. Neural Circuits 4, 100 (2010)

    Article  Google Scholar 

  35. 35

    Hooks, B. M. et al. Laminar analysis of excitatory local circuits in vibrissal motor and sensory cortical areas. PLoS Biol. 9, e1000572 (2011)

    CAS  Article  Google Scholar 

  36. 36

    Shepherd, G. M., Pologruto, T. A. & Svoboda, K. Circuit analysis of experience-dependent plasticity in the developing rat barrel cortex. Neuron 38, 277–289 (2003)

    CAS  Article  Google Scholar 

  37. 37

    Shi, Y., Nenadic, Z. & Xu, X. Novel use of matched filtering for synaptic event detection and extraction. PLoS ONE 5, e15517 (2010)

    ADS  Article  Google Scholar 

  38. 38

    Gdalyahu, A. et al. Associative fear learning enhances sparse network coding in primary sensory cortex. Neuron 75, 121–132 (2012)

    CAS  Article  Google Scholar 

  39. 39

    Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl Acad. Sci. USA 100, 7319–7324 (2003)

    ADS  CAS  Article  Google Scholar 

  40. 40

    Rogan, S. C. & Roth, B. L. Remote control of neuronal signaling. Pharmacol. Rev. 63, 291–315 (2011)

    CAS  Article  Google Scholar 

  41. 41

    Holtmaat, A. et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nature Protocols 4, 1128–1144 (2009)

    CAS  Article  Google Scholar 

  42. 42

    Mrsic-Flogel, T. D. et al. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron 54, 961–972 (2007)

    CAS  Article  Google Scholar 

  43. 43

    Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003)

    Article  Google Scholar 

  44. 44

    Nimmerjahn, A., Kirchhoff, F., Kerr, J. N. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nature Methods 1, 31–37 (2004)

    CAS  Article  Google Scholar 

  45. 45

    Xu, C. & Prince, J. L. Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7, 359–369 (1998)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  46. 46

    Shih, F. Y. Image Processing and Mathematical Morphology: Fundamentals and Applications (CRC, 2009)

    Google Scholar 

Download references


We thank S. Smith, W. Thompson, K. Miller and M. P. Stryker for comments on earlier versions of this manuscript, Y. Shi for help with software, Z. Nenadic for analytical suggestions, D. Ringach for help with GCaMP6 analysis and Z. J. Huang for useful discussions. This work was funded by grants from the US National Eye Institute (EY016052) to J.T.T., and the US National Institute of Neurological Disorders and Stroke (NS078434) and a NARSAD Young Investigator Grant to X.X.

Author information




S.J.K. and E.T. performed the in vivo awake and anaesthetized recordings. S.J.K. performed the diazepam/OGB-1 experiments. E.T. performed the DREADD/GCamp6 experiments. N.D.O. and T.I. performed the glutamate uncaging experiments. X.X. oversaw the glutamate uncaging experiments. J.T.T. oversaw all aspects of the project. S.J.K., N.D.O., X.X. and J.T.T. wrote the manuscript and prepared the figures.

Corresponding authors

Correspondence to Xiangmin Xu or Joshua T. Trachtenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This files contains Supplementary Figures 1-7. (PDF 1356 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuhlman, S., Olivas, N., Tring, E. et al. A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex. Nature 501, 543–546 (2013). https://doi.org/10.1038/nature12485

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing