Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A latent capacity for evolutionary innovation through exaptation in metabolic systems

Abstract

Some evolutionary innovations may originate non-adaptively as exaptations, or pre-adaptations, which are by-products of other adaptive traits1,2,3,4,5. Examples include feathers, which originated before they were used in flight2, and lens crystallins, which are light-refracting proteins that originated as enzymes6. The question of how often adaptive traits have non-adaptive origins has profound implications for evolutionary biology, but is difficult to address systematically. Here we consider this issue in metabolism, one of the most ancient biological systems that is central to all life. We analyse a metabolic trait of great adaptive importance: the ability of a metabolic reaction network to synthesize all biomass from a single source of carbon and energy. We use novel computational methods to sample randomly many metabolic networks that can sustain life on any given carbon source but contain an otherwise random set of known biochemical reactions. We show that when we require such networks to be viable on one particular carbon source, they are typically also viable on multiple other carbon sources that were not targets of selection. For example, viability on glucose may entail viability on up to 44 other sole carbon sources. Any one adaptation in these metabolic systems typically entails multiple potential exaptations. Metabolic systems thus contain a latent potential for evolutionary innovations with non-adaptive origins. Our observations suggest that many more metabolic traits may have non-adaptive origins than is appreciated at present. They also challenge our ability to distinguish adaptive from non-adaptive traits.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Viability on glucose entails viability on multiple other carbon sources.
Figure 2: Innovation varies with respect to the carbon source, C, and the mean metabolic distance between C and Cnew.

References

  1. 1

    Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life 6th edn (Murray, 1872)

  2. 2

    Gould, S. J. & Vrba, E. S. Exaptation: a missing term in the science of form. Paleobiology 8, 4–15 (1982)

    Article  Google Scholar 

  3. 3

    True, J. R. & Carroll, S. B. Gene co-option in physiological and morphological evolution. Annu. Rev. Cell Dev. Biol. 18, 53–80 (2002)

    CAS  Article  Google Scholar 

  4. 4

    Zákány, J. & Duboule, D. Hox genes in digit development and evolution. Cell Tissue Res. 296, 19–25 (1999)

    Article  Google Scholar 

  5. 5

    Keys, D. N. et al. Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science 283, 532–534 (1999)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Tomarev, S. I. & Piatigorsky, J. Lens crystallins of invertebrates. Diversity and recruitment from detoxification enzymes and novel proteins. Eur. J. Biochem. 235, 449–465 (1996)

    CAS  Article  Google Scholar 

  7. 7

    Pievani, T. & Serrelli, E. Exaptation in human evolution: how to test adaptive vs exaptive evolutionary hypotheses. J. Anthropol. Sci. 89, 9–23 (2011)

    PubMed  Google Scholar 

  8. 8

    Schuster, P., Fontana, W., Stadler, P. F. & Hofacker, I. L. From sequences to shapes and back: a case study in RNA secondary structures. Proc. R. Soc. Lond. B 255, 279–284 (1994)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Lipman, D. J. & Wilbur, W. J. Modelling neutral and selective evolution of protein folding. Proc. R. Soc. Lond. B 245, 7–11 (1991)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Cowperthwaite, M. C., Economo, E. P., Harcombe, W. R., Miller, E. L. & Meyers, L. A. The ascent of the abundant: how mutational networks constrain evolution. PLoS Comput. Biol. 4, e1000110 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11

    Ferrada, E. & Wagner, A. A comparison of genotype-phenotype maps for RNA and proteins. Biophys. J. 102, 1916–1925 (2012)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Samal, A., Matias Rodrigues, J. F., Jost, J., Martin, O. C. & Wagner, A. Genotype networks in metabolic reaction spaces. BMC Syst. Biol. 4, 30 (2010)

    Article  Google Scholar 

  13. 13

    Poulsen, T. S., Chang, Y.-Y. & Hove-Jensen, B. D-allose catabolism of Escherichia coli: involvement of alsI and regulation of als regulon expression by allose and ribose. J. Bacteriol. 181, 7126–7130 (1999)

    CAS  Article  Google Scholar 

  14. 14

    Meijnen, J.-P., De Winde, J. H. & Ruijssenaars, H. J. Engineering Pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose. Appl. Environ. Microbiol. 74, 5031–5037 (2008)

    CAS  Article  Google Scholar 

  15. 15

    Feist, A. M. et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3, 121 (2007)

    Article  Google Scholar 

  16. 16

    Neidhardt, F. & Ingraham, J. Escherichia Coli and Salmonella Typhimurium: Cellular and Molecular Biology Vol. 1, 13–16 (American Society for Microbiology, 1987)

    Google Scholar 

  17. 17

    Nam, H. et al. Network context and selection in the evolution to enzyme specificity. Science 337, 1101–1104 (2012)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Aguilar, C. et al. Genetic changes during a laboratory adaptive evolution process that allowed fast growth in glucose to an Escherichia coli strain lacking the major glucose transport system. BMC Genomics 13, 385 (2012)

    CAS  Article  Google Scholar 

  19. 19

    Kim, J., Kershner, J. P., Novikov, Y., Shoemaker, R. K. & Copley, S. D. Three serendipitous pathways in E. coli can bypass a block in pyridoxal-5′-phosphate synthesis. Mol. Syst. Biol. 6, 436 (2010)

    CAS  Article  Google Scholar 

  20. 20

    Martin, O. C. & Wagner, A. Multifunctionality and robustness trade-offs in model genetic circuits. Biophys. J. 94, 2927–2937 (2008)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Ancel, L. W. & Fontana, W. Plasticity, evolvability, and modularity in RNA. J. Exp. Zool. 288, 242–283 (2000)

    CAS  Article  Google Scholar 

  22. 22

    Amitai, G., Gupta, R. D. & Tawfik, D. S. Latent evolutionary potentials under the neutral mutational drift of an enzyme. HFSP J. 1, 67–78 (2007)

    CAS  Article  Google Scholar 

  23. 23

    Isalan, M. et al. Evolvability and hierarchy in rewired bacterial gene networks. Nature 452, 840–845 (2008)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Price, N. D., Reed, J. L., Palsson, B. & Ø Genome-scale models of microbial cells: evaluating the consequences of constraints. Nature Rev. Microbiol. 2, 886–897 (2004)

  25. 25

    Kauffman, K. J., Prakash, P. & Edwards, J. S. Advances in flux balance analysis. Curr. Opin. Biotechnol. 14, 491–496 (2003)

    CAS  Article  Google Scholar 

  26. 26

    Goto, S., Nishioka, T. & Kanehisa, M. LIGAND: chemical database of enzyme reactions. Nucleic Acids Res. 28, 380–382 (2000)

    CAS  Article  Google Scholar 

  27. 27

    Goto, S., Okuno, Y., Hattori, M., Nishioka, T. & Kanehisa, M. LIGAND: database of chemical compounds and reactions in biological pathways. Nucleic Acids Res. 30, 402–404 (2002)

    CAS  Article  Google Scholar 

  28. 28

    Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000)

    CAS  Article  Google Scholar 

  29. 29

    Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M. & Hirakawa, M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38, D355–D360 (2010)

    CAS  Article  Google Scholar 

  30. 30

    Barve, A., Rodrigues, J. F. M. & Wagner, A. Superessential reactions in metabolic networks. Proc. Natl Acad. Sci. USA 109, E1121–E1130 (2012)

    CAS  Article  Google Scholar 

  31. 31

    Matias Rodrigues, J. F. & Wagner, A. Evolutionary plasticity and innovations in complex metabolic reaction networks. PLoS Comput. Biol. 5, e1000613 (2009)

    ADS  Article  Google Scholar 

  32. 32

    Henry, C. S. et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nature Biotechnol. 28, 977–982 (2010)

    CAS  Article  Google Scholar 

  33. 33

    Matias Rodrigues, J. F. & Wagner, A. Genotype networks, innovation, and robustness in sulfur metabolism. BMC Syst. Biol. 5, 39 (2011)

    Article  Google Scholar 

  34. 34

    Binder, K. & Heerman, D. W. Monte Carlo Simulation in Statistical Physics (Springer, 2010)

    Book  Google Scholar 

  35. 35

    Koskiniemi, S., Sun, S., Berg, O. G. & Andersson, D. I. Selection-driven gene loss in bacteria. PLoS Genet. 8, e1002787 (2012)

    CAS  Article  Google Scholar 

  36. 36

    Ochman, H., Elwyn, S. & Moran, N. A. Calibrating bacterial evolution. Proc. Natl Acad. Sci. USA 96, 12638–12643 (1999)

    ADS  CAS  Article  Google Scholar 

  37. 37

    Wagner, A. & Fell, D. A. The small world inside large metabolic networks. Proc. R. Soc. Lond. B 268, 1803–1810 (2001)

    CAS  Article  Google Scholar 

  38. 38

    Ma, H.-W. & Zeng, A.-P. The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics 19, 1423–1430 (2003)

    CAS  Article  Google Scholar 

  39. 39

    Moore, E. in Proc. Internat. Symp. Theory Switching, Ann. Comput. Lab. Harvard Univ. 285–292 (Harvard Univ. Press, 1959)

    Google Scholar 

  40. 40

    Sokal, R. R. & Michener, C. D. A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 28, 1409–1438 (1958)

    Google Scholar 

Download references

Acknowledgements

We thank K. Raman, N. Sabath, J. L. Payne and J. Rodrigues for discussions. A.W. acknowledges financial support through Swiss National Science Foundation grant 315230-129708.

Author information

Affiliations

Authors

Contributions

A.B. and A.W. designed the research; A.B. performed the research; A.B. contributed new reagents and analytic tools; A.B. and A.W. analysed the data; and A.B. and A.W. wrote the paper.

Corresponding author

Correspondence to Andreas Wagner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Results, Supplementary Figures 1-12, Supplementary Tables 1-4 and additional references. (PDF 2142 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barve, A., Wagner, A. A latent capacity for evolutionary innovation through exaptation in metabolic systems. Nature 500, 203–206 (2013). https://doi.org/10.1038/nature12301

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing