Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A stable transcription factor complex nucleated by oligomeric AML1–ETO controls leukaemogenesis


Transcription factors are frequently altered in leukaemia through chromosomal translocation, mutation or aberrant expression1. AML1–ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukaemia, is a transcription factor implicated in both gene repression and activation2. AML1–ETO oligomerization, mediated by the NHR2 domain, is critical for leukaemogenesis3,4,5,6, making it important to identify co-regulatory factors that ‘read’ the NHR2 oligomerization and contribute to leukaemogenesis4. Here we show that, in human leukaemic cells, AML1–ETO resides in and functions through a stable AML1–ETO-containing transcription factor complex (AETFC) that contains several haematopoietic transcription (co)factors. These AETFC components stabilize the complex through multivalent interactions, provide multiple DNA-binding domains for diverse target genes, co-localize genome wide, cooperatively regulate gene expression, and contribute to leukaemogenesis. Within the AETFC complex, AML1–ETO oligomerization is required for a specific interaction between the oligomerized NHR2 domain and a novel NHR2-binding (N2B) motif in E proteins. Crystallographic analysis of the NHR2–N2B complex reveals a unique interaction pattern in which an N2B peptide makes direct contact with side chains of two NHR2 domains as a dimer, providing a novel model of how dimeric/oligomeric transcription factors create a new protein-binding interface through dimerization/oligomerization. Intriguingly, disruption of this interaction by point mutations abrogates AML1–ETO-induced haematopoietic stem/progenitor cell self-renewal and leukaemogenesis. These results reveal new mechanisms of action of AML1–ETO, and provide a potential therapeutic target in t(8;21)-positive acute myeloid leukaemia.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: AML1–ETO resides in and functions through AETFC.
Figure 2: The oligomerized AML1–ETO NHR2 domain mediates a specific interaction with E proteins.
Figure 3: Structural details of the NHR2–N2B interaction.
Figure 4: Role of the AML1–ETO–E-protein interactions in human HSPC self-renewal and mouse leukaemogenesis.

Accession codes


Gene Expression Omnibus

Protein Data Bank

Data deposits

ChIP-seq and RNA-seq data have been deposited in the Gene Expression Omnibus under accession GSE43834. The crystal structure of the NHR2–N2B complex has been deposited in the Protein Data Bank under accession 4JOL.


  1. Look, A. T. Oncogenic transcription factors in the human acute leukemias. Science 278, 1059–1064 (1997)

    Article  ADS  CAS  Google Scholar 

  2. Peterson, L. F. & Zhang, D. E. The 8;21 translocation in leukemogenesis. Oncogene 23, 4255–4262 (2004)

    Article  CAS  Google Scholar 

  3. Minucci, S. et al. Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol. Cell 5, 811–820 (2000)

    Article  CAS  Google Scholar 

  4. Liu, Y. et al. The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO’s activity. Cancer Cell 9, 249–260 (2006)

    Article  Google Scholar 

  5. Kwok, C., Zeisig, B. B., Qiu, J., Dong, S. & So, C. W. Transforming activity of AML1-ETO is independent of CBFβ and ETO interaction but requires formation of homo-oligomeric complexes. Proc. Natl Acad. Sci. USA 106, 2853–2858 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Yan, M., Ahn, E. Y., Hiebert, S. W. & Zhang, D. E. RUNX1/AML1 DNA-binding domain and ETO/MTG8 NHR2-dimerization domain are critical to AML1-ETO9a leukemogenesis. Blood 113, 883–886 (2009)

    Article  CAS  Google Scholar 

  7. Okumura, A. J., Peterson, L. F., Okumura, F., Boyapati, A. & Zhang, D. E. t(8;21)(q22;q22) fusion proteins preferentially bind to duplicated AML1/RUNX1 DNA-binding sequences to differentially regulate gene expression. Blood 112, 1392–1401 (2008)

    Article  CAS  Google Scholar 

  8. Gelmetti, V. et al. Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol. Cell. Biol. 18, 7185–7191 (1998)

    Article  CAS  Google Scholar 

  9. Lutterbach, B. et al. ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol. Cell. Biol. 18, 7176–7184 (1998)

    Article  CAS  Google Scholar 

  10. Wang, J., Hoshino, T., Redner, R. L., Kajigaya, S. & Liu, J. M. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc. Natl Acad. Sci. USA 95, 10860–10865 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Westendorf, J. J. et al. The t(8;21) fusion product, AML-1–ETO, associates with C/EBP-α, inhibits C/EBP-α-dependent transcription, and blocks granulocytic differentiation. Mol. Cell. Biol. 18, 322–333 (1998)

    Article  CAS  Google Scholar 

  12. Mao, S., Frank, R. C., Zhang, J., Miyazaki, Y. & Nimer, S. D. Functional and physical interactions between AML1 proteins and an ETS protein, MEF: implications for the pathogenesis of t(8;21)-positive leukemias. Mol. Cell. Biol. 19, 3635–3644 (1999)

    Article  CAS  Google Scholar 

  13. Elagib, K. E. et al. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood 101, 4333–4341 (2003)

    Article  CAS  Google Scholar 

  14. Zhang, J., Kalkum, M., Yamamura, S., Chait, B. T. & Roeder, R. G. E protein silencing by the leukemogenic AML1-ETO fusion protein. Science 305, 1286–1289 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Gardini, A. et al. AML1/ETO oncoprotein is directed to AML1 binding regions and co-localizes with AML1 and HEB on its targets. PLoS Genet. 4, e1000275 (2008)

    Article  Google Scholar 

  16. Guo, C., Hu, Q., Yan, C. & Zhang, J. Multivalent binding of the ETO corepressor to E proteins facilitates dual repression controls targeting chromatin and the basal transcription machinery. Mol. Cell. Biol. 29, 2644–2657 (2009)

    Article  CAS  Google Scholar 

  17. Martens, J. H. et al. ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia. Blood 120, 4038–4048 (2012)

    Article  CAS  Google Scholar 

  18. Wang, L. et al. The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science 333, 765–769 (2011)

    Article  ADS  CAS  Google Scholar 

  19. Shia, W. J. et al. PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. Blood 119, 4953–4962 (2012)

    Article  CAS  Google Scholar 

  20. Miyoshi, H. et al. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J. 12, 2715–2721 (1993)

    Article  CAS  Google Scholar 

  21. Wadman, I. A. et al. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 16, 3145–3157 (1997)

    Article  CAS  Google Scholar 

  22. Follows, G. A. et al. Epigenetic consequences of AML1-ETO action at the human c-FMS locus. EMBO J. 22, 2798–2809 (2003)

    Article  CAS  Google Scholar 

  23. Huang, G. et al. PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis. Nature Genet. 40, 51–60 (2008)

    Article  CAS  Google Scholar 

  24. Heidenreich, O. et al. AML1/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of t(8;21)-positive leukemic cells. Blood 101, 3157–3163 (2003)

    Article  CAS  Google Scholar 

  25. Yan, M. et al. A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nature Med. 12, 945–949 (2006)

    Article  CAS  Google Scholar 

  26. Sanchez, M. et al. An SCL 3′ enhancer targets developing endothelium together with embryonic and adult haematopoietic progenitors. Development 126, 3891–3904 (1999)

    CAS  PubMed  Google Scholar 

  27. Park, S. et al. Structure of the AML1-ETO eTAFH domain–HEB peptide complex and its contribution to AML1-ETO activity. Blood 113, 3558–3567 (2009)

    Article  CAS  Google Scholar 

  28. Mulloy, J. C. et al. The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood 99, 15–23 (2002)

    Article  CAS  Google Scholar 

  29. Amoutzias, G. D., Robertson, D. L., Van de, P. Y. & Oliver, S. G. Choose your partners: dimerization in eukaryotic transcription factors. Trends Biochem. Sci. 33, 220–229 (2008)

    Article  CAS  Google Scholar 

  30. Funnell, A. P. & Crossley, M. Homo- and heterodimerization in transcriptional regulation. Adv. Exp. Med. Biol. 747, 105–121 (2012)

    Article  CAS  Google Scholar 

  31. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983)

    Article  CAS  Google Scholar 

  32. Giannopoulou, E. G. & Elemento, O. An integrated ChIP-seq analysis platform with customizable workflows. BMC Bioinformatics 12, 277 (2011)

    Article  Google Scholar 

  33. Sharov, A. A. & Ko, M. S. Exhaustive search for over-represented DNA sequence motifs with CisFinder. DNA Res. 16, 261–273 (2009)

    Article  CAS  Google Scholar 

  34. Ji, H. et al. An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nature Biotechnol. 26, 1293–1300 (2008)

    Article  CAS  Google Scholar 

  35. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5, 621–628 (2008)

    Article  CAS  Google Scholar 

  36. Jacobs, S. A., Fischle, W. & Khorasanizadeh, S. Assays for the determination of structure and dynamics of the interaction of the chromodomain with histone peptides. Methods Enzymol. 376, 131–148 (2004)

    Article  CAS  Google Scholar 

  37. Zuber, J. et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev. 23, 877–889 (2009)

    Article  CAS  Google Scholar 

Download references


We thank N. A. Speck and J. H. Bushweller for providing the AML1–ETO m7 plasmid, and R. Baer for providing anti-SCL antibodies. This work was supported by National Institutes of Health (NIH) grants CA163086 (R.G.R.), CA129325 (R.G.R.), CA113872 (R.G.R.) and CA166835 (S.D.N.), Starr Cancer Consortium grant I5-A554 (R.G.R., D.J.P. and S.D.N.), Leukemia and Lymphoma Society (LLS) SCOR grants 7013-02 (R.G.R. and S.D.N.) and 7132-08 (R.G.R., A.M. and D.J.P.), and Rockefeller University Center for Clinical and Translational Science Pilot Project grant UL1RR024143 from NIH (X.-J.S.). X.-J.S. was a Starr Cancer Consortium Visiting Fellow. L.W. was an Empire State Stem Cell Scholar and an LLS Fellow. Y.J. was an American Society of Haematology Scholar. W.-Y.C. was an LLS Fellow. D.J.P. was supported by funds from the Abby Rockefeller Mauze Trust and the Maloris Foundation.

Author information

Authors and Affiliations



X.-J.S. and R.G.R. conceived the project. R.G.R. supervised the biochemical studies. S.D.N. supervised the leukaemia pathological studies. D.J.P. supervised the structural studies. A.M. supervised the genomic studies. X.-J.S., Z.W., L.W., Y.J., N.K., T.D.S., W.-Y.C., Z.T., T.N., O.E. and W.F. performed the experiments and analysed the data. X.J.S. and R.G.R. wrote the paper.

Corresponding author

Correspondence to Robert G. Roeder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-15, Supplementary Tables 1-3, a Supplementary Discussion and additional references. (PDF 2895 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sun, XJ., Wang, Z., Wang, L. et al. A stable transcription factor complex nucleated by oligomeric AML1–ETO controls leukaemogenesis. Nature 500, 93–97 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing