Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics


Understanding the growth rate of the continental crust through time is a fundamental issue in Earth sciences1,2,3,4,5,6,7,8. The isotopic signatures of noble gases in the silicate Earth (mantle, crust) and in the atmosphere afford exceptional insight into the evolution through time of these geochemical reservoirs9. However, no data for the compositions of these reservoirs exists for the distant past, and temporal exchange rates between Earth’s interior and its surface are severely under-constrained owing to a lack of samples preserving the original signature of the atmosphere at the time of their formation. Here, we report the analysis of argon in Archaean (3.5-billion-year-old) hydrothermal quartz. Noble gases are hosted in primary fluid inclusions containing a mixture of Archaean freshwater and hydrothermal fluid. Our analysis reveals Archaean atmospheric argon with a 40Ar/36Ar value of 143 ± 24, lower than the present-day value of 298.6 (for which 40Ar has been produced by the radioactive decay of the potassium isotope 40K, with a half-life of 1.25 billion years; 36Ar is primordial in origin). This ratio is consistent with an early development of the felsic crust, which might have had an important role in climate variability during the first half of Earth’s history.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: 40Ar/36Ar versus Cl/36Ar for step-heating and step-crushing data of the irradiated sample.
Figure 2: Evolution of the atmospheric 40Ar/36Ar ratio and of the volume of continental crust relative to its present-day volume, as a function of time.


  1. Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334–1336 (2012)

    ADS  CAS  Article  Google Scholar 

  2. Hawkesworth, C. J. & Kemp, A. I. S. The differentiation and rates of generation of the continental crust. Chem. Geol. 226, 134–143 (2006)

    ADS  CAS  Article  Google Scholar 

  3. Armstrong, R. L. & Harmon, R. S. Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil. Trans. R. Soc. Lond. A 301, 443–472 (1981)

    ADS  CAS  Article  Google Scholar 

  4. Hurley, P. M. & Rand, J. R. Pre-drift continental nuclei. Science 164, 1229–1242 (1969)

    ADS  CAS  Article  Google Scholar 

  5. McLennan, S. M. & Taylor, R. S. Geochemical constraints on the growth of the continental crust. J. Geol. 90, 347–361 (1982)

    ADS  CAS  Article  Google Scholar 

  6. Reymer, A. & Schubert, G. Phanerozoic addition rates to the continental crust and crustal growth. Tectonics 3, 63–77 (1984)

    ADS  Article  Google Scholar 

  7. Allègre, C. J. & Rousseau, D. The growth of the continent through geological time studied by Nd isotope analysis of shales. Earth Planet. Sci. Lett. 67, 19–34 (1984)

    ADS  Article  Google Scholar 

  8. Condie, K. C., Bickford, M. E., Aster, R. C., Belousova, E. & Scholl, D. W. Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust. Geol. Soc. Am. Bull. 123, 951–957 (2011)

    ADS  CAS  Article  Google Scholar 

  9. Hamano, Y. & Ozima, M. in Terrestrial Rare Gases (eds Alexander, E. C. & Ozima, M. ) Adv. Earth Planet. Sci. Jpn. Sci. Soc. 3, 155–171 (1978)

    ADS  CAS  Google Scholar 

  10. Lee, J.-Y. et al. A redetermination of the isotopic abundances of atmospheric Ar. Geochim. Cosmochim. Acta 70, 4507–4512 (2006)

    ADS  CAS  Article  Google Scholar 

  11. Ozima, M. & Podosek, F. A. Noble Gas Geochemistry (Cambridge Univ. Press, 2001)

    Book  Google Scholar 

  12. Arevalo, R., Jr, McDonough, W. F. & Luong, M. The K/U ratio of the silicate Earth: insights into mantle composition, structure and thermal evolution. Earth Planet. Sci. Lett. 278, 361–369 (2009)

    ADS  CAS  Article  Google Scholar 

  13. Fanale, F. P. A case for catastrophic early degassing of the Earth. Chem. Geol. 8, 79–105 (1971)

    ADS  CAS  Article  Google Scholar 

  14. Pepin, R. O. Atmospheres on the terrestrial planets: clues to origin and evolution. Earth Planet. Sci. Lett. 252, 1–14 (2006)

    ADS  CAS  Article  Google Scholar 

  15. Tolstikhin, I. N. & Marty, B. The evolution of terrestrial volatiles: a view from helium, neon, argon and nitrogen isotope modeling. Chem. Geol. 147, 27–52 (1998)

    ADS  CAS  Article  Google Scholar 

  16. Porcelli, D. & Wasserburg, G. J. Mass transfer of helium, neon, argon, and xenon through a steady-state upper mantle. Geochim. Cosmochim. Acta 59, 4921–4937 (1995)

    ADS  CAS  Article  Google Scholar 

  17. Allègre, C. J., Staudacher, T. & Sarda, P. Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth's mantle. Earth Planet. Sci. Lett. 81, 127–150 (1987)

    ADS  Article  Google Scholar 

  18. Cadogan, P. H. Paleoatmospheric argon in Rhynie chert. Nature 268, 38–41 (1977)

    ADS  CAS  Article  Google Scholar 

  19. Rice, C. M. et al. A Devonian auriferous hot spring system, Rhynie, Scotland. J. Geol. Soc. Lond. 152, 229–250 (1995)

    CAS  Article  Google Scholar 

  20. Bender, M. L., Barnett, B., Dreyfus, G., Jouzel, J. & Porcelli, D. The contemporary degassing rate of Ar-40 from the solid Earth. Proc. Natl Acad. Sci. USA 105, 8232–8237 (2008)

    ADS  CAS  Article  Google Scholar 

  21. Buick, R. & Dunlop, J. S. R. Evaporitic sediments of early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology 37, 247–277 (1990)

    ADS  Article  Google Scholar 

  22. Foriel, J. et al. Biological control of Cl/Br and low sulfate concentration in a 3.5-Ga-old seawater from North Pole, Western Australia. Earth Planet. Sci. Lett. 228, 451–463 (2004)

    ADS  CAS  Article  Google Scholar 

  23. Turner, G. Hydrothermal fluids and argon isotopes in quartz veins and cherts. Geochim. Cosmochim. Acta 52, 1443–1448 (1988)

    ADS  CAS  Article  Google Scholar 

  24. Van Kranendonk, M. J., Philippot, P., Lepot, K., Bodorkos, S. & Parajno, F. Geological setting of Earth's oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambr. Res. 167, 93–124 (2008)

    ADS  CAS  Article  Google Scholar 

  25. Tessalina, S. G., Bourdon, B., Van Kranendonk, M. V., Birck, J. L. & Philippot, P. Influence of Hadean crust evident in basalts and cherts from the Pilbara Craton. Nature Geosci. 3, 214–217 (2010)

    ADS  CAS  Article  Google Scholar 

  26. Thorpe, R. I., Hickman, A. H., Davis, D. W., Mortensen, J. K. & Trendall, A. F. U-Pb zircon geochronology of Archaean felsic units in the Marble Bar region, Pilbara Craton, Western Australia. Precambr. Res. 56, 169–189 (1992)

    ADS  CAS  Article  Google Scholar 

  27. Pujol, M., Marty, B., Burnard, P. & Philippot, P. Xenon in Archaean barite: weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation. Geochim. Cosmochim. Acta 73, 6834–6846 (2009)

    ADS  CAS  Article  Google Scholar 

  28. Pujol, M., Marty, B. & Burgess, R. Chondritic-like xenon trapped in Archaean rocks: a possible signature of the ancient atmosphere. Earth Planet. Sci. Lett. 308, 298–306 (2011)

    ADS  CAS  Article  Google Scholar 

  29. York, D. Least-squares fitting of a straight line. Can. J. Phys. 44, 1079–1086 (1966)

    ADS  MathSciNet  Article  Google Scholar 

  30. Kasting, J. F. Faint young Sun redux. Nature 464, 687–689 (2010)

    ADS  CAS  Article  Google Scholar 

  31. Kendrick, M. A., Burgess, R., Pattrick, R. A. D. & Turner, G. Halogen and Ar-Ar age determinations of inclusions within quartz veins from porphyry copper deposits using complementary noble gas extractions. Chem. Geol. 177, 351–370 (2001)

    ADS  CAS  Article  Google Scholar 

  32. Srinivasan, B. Barites: anomalous xenon from spallation and neutron-induced reactions. Earth Planet. Sci. Lett. 31, 129–141 (1976)

    ADS  CAS  Article  Google Scholar 

  33. Meshik, A. P., Hohenberg, C. M., Pravdivtseva, O. V. & Kapusta, Y. S. Weak decay of 130Ba and 132Ba: geochemical measurements. Phys. Rev. C 64, 035205 (2001)

    ADS  Article  Google Scholar 

  34. Heber, V. S., Brooker, R. A., Kelley, S. P. & Wood, B. J. Crystal-melt partitioning of noble gases (helium, neon, argon, krypton, and xenon) for olivine and clinopyroxene. Geochim. Cosmochim. Acta 71, 1041–1061 (2007)

    ADS  CAS  Article  Google Scholar 

  35. Boyet, M. & Carlson, R. W. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate. Earth Sci. 309, 576–581 (2005)

    CAS  Google Scholar 

  36. Caro, G., Bourdon, B., Birk, J. L. & Moorbath, S. 146Sm-142Nd evidence from Isua metamorphosed sediments for early differentiation of Earth’s mantle. Nature 423, 428–432 (2003)

    ADS  CAS  Article  Google Scholar 

  37. Fyfe, W. S. Evolution of the Earth’s crust: modern plate tectonics to ancient hot spot tectonics? Chem. Geol. 23, 89–114 (1978)

    ADS  CAS  Article  Google Scholar 

  38. Hurley, P. M. Absolute abundance and distribution of Rb, K and Sr in the Earth. Geochim. Cosmochim. Acta 32, 273–283 (1968)

    ADS  CAS  Article  Google Scholar 

  39. Veizer, J. & Jansen, S. L. Basement and sedimentary recycling and continental evolution. J. Geol. 87, 341–370 (1979)

    ADS  CAS  Article  Google Scholar 

Download references


We thank D. Blagburn and L. Zimmermann for their technical support with the irradiated samples measurements, and M. Derrien and B. Faure for their help with the conception of the degassing model. This project was funded by the CNRS, the Région Lorraine, the ANR (Agence Nationale pour la Recherche) projects “e-Life” and “e-Life2” to P.P. and by the European Research Council under the European Community's Seventh Framework Program (FP7/2007–2013 grant agreement number 267255 to B.M. The drilling programme was supported by funds from the Institut de Physique du Globe de Paris (IPGP) and the CNRS, and by the Geological Survey of Western Australia (GSWA). This is Centre de Recherches Géochimiques et Pétrographiques (CRPG) contribution number 2239.

Author information

Authors and Affiliations



M.P. and R.B. performed the experiments and analysed the data. P.P. provided the sample and characterized the fluid inclusions. M.P. and B.M. did the calculations and the modelling, and wrote the paper. All authors commented on the manuscript.

Corresponding author

Correspondence to Bernard Marty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-5, Supplementary Tables 1-4 and additional references. (PDF 992 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pujol, M., Marty, B., Burgess, R. et al. Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics. Nature 498, 87–90 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing