Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chemical mapping of a single molecule by plasmon-enhanced Raman scattering


Visualizing individual molecules with chemical recognition is a longstanding target in catalysis, molecular nanotechnology and biotechnology. Molecular vibrations provide a valuable ‘fingerprint’ for such identification. Vibrational spectroscopy based on tip-enhanced Raman scattering allows us to access the spectral signals of molecular species very efficiently via the strong localized plasmonic fields produced at the tip apex1,2,3,4,5,6,7,8,9,10,11. However, the best spatial resolution of the tip-enhanced Raman scattering imaging is still limited to 3−15 nanometres5,12,13,14,15,16, which is not adequate for resolving a single molecule chemically. Here we demonstrate Raman spectral imaging with spatial resolution below one nanometre, resolving the inner structure and surface configuration of a single molecule. This is achieved by spectrally matching the resonance of the nanocavity plasmon to the molecular vibronic transitions, particularly the downward transition responsible for the emission of Raman photons. This matching is made possible by the extremely precise tuning capability provided by scanning tunnelling microscopy. Experimental evidence suggests that the highly confined and broadband nature of the nanocavity plasmon field in the tunnelling gap is essential for ultrahigh-resolution imaging through the generation of an efficient double-resonance enhancement for both Raman excitation and Raman emission. Our technique not only allows for chemical imaging at the single-molecule level, but also offers a new way to study the optical processes and photochemistry of a single molecule.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Clean TERS spectra using well-defined tip and sample.
Figure 2: Spectral matching to generate broadband nanocavity plasmon-enhanced Raman scattering.
Figure 3: Single-molecule TERS spectra and their dependency on molecular orientations.
Figure 4: TERS mapping of a single H2TBPP molecule on Ag(111).


  1. 1

    Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000)

    ADS  Article  Google Scholar 

  2. 2

    Anderson, M. S. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76, 3130–3132 (2000)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Hayazawa, N., Inouye, Y., Sekkat, Z. & Kawata, S. Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183, 333–336 (2000)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Pettinger, B., Picardi, G., Schuster, R. & Ertl, G. Surface enhanced Raman spectroscopy: towards single molecular spectroscopy. Electrochem. Jpn. 68, 942–949 (2000)

    CAS  Google Scholar 

  5. 5

    Anderson, N., Hartschuh, A., Cronin, S. & Novotny, L. Nanoscale vibrational analysis of single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 2533–2537 (2005)

    CAS  Article  Google Scholar 

  6. 6

    Neacsu, C. C., Dreyer, J., Behr, N. & Raschke, M. B. Scanning-probe Raman spectroscopy with single-molecule sensitivity. Phys. Rev. B 73, 193406 (2006)

    ADS  Article  Google Scholar 

  7. 7

    Sonntag, M. D. et al. Single-molecule tip-enhanced Raman spectroscopy. J. Phys. Chem. C 116, 478–483 (2012)

    CAS  Article  Google Scholar 

  8. 8

    Berweger, S. et al. Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy. Nature Nanotechnol. 4, 496–499 (2009)

    ADS  CAS  Article  Google Scholar 

  9. 9

    van Schrojenstein Lantman, E. M., Deckert-Gaudig, T., Mank, A. J. G., Deckert, V. & Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nature Nanotechnol. 7, 583–586 (2012)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Liu, Z. et al. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nature Commun. 2, 305 (2011)

    ADS  Article  Google Scholar 

  11. 11

    Alonso-González, P. et al. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nature Commun. 3, 684 (2012)

    ADS  Article  Google Scholar 

  12. 12

    Ichimura, T. et al. Subnanometric near-field Raman investigation in vicinity of a metallic nanostructure. Phys. Rev. Lett. 102, 186101 (2009)

    ADS  Article  Google Scholar 

  13. 13

    Steidtner, J. & Pettinger, B. Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys. Rev. Lett. 100, 236101 (2008)

    ADS  Article  Google Scholar 

  14. 14

    Stadler, J., Schmid, T. & Zenobi, R. Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy. Nano Lett. 10, 4514–4520 (2010)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Yano, T., Verma, P., Saito, Y., Ichimura, T. & Kawata, S. Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres. Nature Photon. 3, 473–477 (2009)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Treffer, R., Lin, X. M., Bailo, E., Deckert-Gaudig, T. & Deckert, V. Distinction of nucleobases—a tip-enhanced Raman approach. Beilstein J. Nanotechnol 2, 628–637 (2011)

    CAS  Article  Google Scholar 

  17. 17

    Pettinger, B., Schambach, P., Villagómez, C. J. & Scott, N. Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. Annu. Rev. Phys. Chem. 63, 379–399 (2012)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Berweger, S. & Raschke, M. B. Signal limitations in tip-enhanced Raman scattering: the challenge to become a routine analytical technique. Anal. Bioanal. Chem. 396, 115–123 (2010)

    CAS  Article  Google Scholar 

  19. 19

    Xu, H. X., Aizpurua, J., Käll, M. & Apell, P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 62, 4318–4324 (2000)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Aizpurua, J., Hoffmann, G., Apell, S. P. & Berndt, R. Electromagnetic coupling on an atomic scale. Phys. Rev. Lett. 89, 156803 (2002)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Jiang, N. et al. Observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced Raman spectroscopy combined with molecular-resolution scanning tunneling microscopy. Nano Lett. 12, 5061–5067 (2012)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Dong, Z. C. et al. Generation of molecular hot electroluminescence by resonant nanocavity plasmons. Nature Photon. 4, 50–54 (2010)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Dong, Z. C. et al. Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope. Phys. Rev. Lett. 92, 086801 (2004)

    ADS  Article  Google Scholar 

  24. 24

    Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Pettinger, B., Domke, K. F., Zhang, D., Picardi, G. & Schuster, R. Tip-enhanced Raman scattering: influence of the tip-surface geometry on optical resonance and enhancement. Surf. Sci. 603, 1335–1341 (2009)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Itoh, T. et al. Surface-enhanced resonance Raman scattering and background light emission coupled with plasmon of single Ag nanoaggregates. J. Chem. Phys. 124, 134708 (2006)

    ADS  Article  Google Scholar 

  27. 27

    Yorulmaz, M., Khatua, S., Zijlstra, P., Gaiduk, A. & Orrit, M. Luminescence quantum yield of single gold nanorods. Nano Lett. 12, 4385–4391 (2012)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Kukura, P., McCamant, D. W. & Mathies, R. A. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 58, 461–488 (2007)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Wang, X. et al. Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips. Appl. Phys. Lett. 91, 101105 (2007)

    ADS  Article  Google Scholar 

  30. 30

    Zhang, C. et al. Fabrication of silver tips for scanning tunneling microscope induced luminescence. Rev. Sci. Instrum. 82, 083101 (2011)

    ADS  CAS  Article  Google Scholar 

Download references


We thank B. Wang, B. Ren, H. X. Xu, Z. Liu, and X. M. Yang for discussions and Unisoku Company for technical assistance. This work is supported by the National Basic Research Program of China, the Strategic Priority Research Program of the Chinese Academy of Sciences, the Natural Science Foundation of China and the Basque Government Project of Excellence (ETORTEK).

Author information




R.Z. and Y.Z. contributed equally to this work. Z.C.D. and J.G.H. supervised the project and designed the experiments. R.Z., Y.Z., S.J., C.Z., L.G.C., L.Z., Y.L. and Z.C.D. performed experiments and analysed data. Y.Z., J.A., Y.L., J.L.Y. and Z.C.D. contributed to the interpretation of the data and theoretical simulations. Z.C.D., Y.Z., Y.L., J.A. and J.G.H. wrote the manuscript.

Corresponding authors

Correspondence to Z. C. Dong or J. G. Hou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-5, additional references and Supplementary Text and Data sections S1-S6 as follows: S1 Supplementary methods -experimental setup; S2 Supplementary methods - computational models; S3 Spectral comparison and spectral assignment; S4 the role of the tunneling current in the STM-controlled TERS; S5 an “analogue” to the broadband femtosecond stimulated Raman scattering and S6 containing the full Supplementary Video legend. (PDF 1193 kb)

Molecular vibrations of a H2TBPP molecule for representative Raman modes in the calculated spectrum via DFT

This video shows the molecular vibrations of a H2TBPP molecule for those representative Raman modes corresponding to the labeled peaks in Figure 2 for the calculated spectrum via DFT. The symmetry of each mode and a schematic of C2v point-group symmetry for H2TBPP molecule are also shown in this video. (MOV 1837 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, R., Zhang, Y., Dong, Z. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing