Accurate assessment of mass, models and resolution by small-angle scattering



Modern small-angle scattering (SAS) experiments with X-rays or neutrons provide a comprehensive, resolution-limited observation of the thermodynamic state. However, methods for evaluating mass and validating SAS-based models and resolution have been inadequate. Here we define the volume of correlation, Vc, a SAS invariant derived from the scattered intensities that is specific to the structural state of the particle, but independent of concentration and the requirements of a compact, folded particle. We show that Vc defines a ratio, QR, that determines the molecular mass of proteins or RNA ranging from 10 to 1,000 kilodaltons. Furthermore, we propose a statistically robust method for assessing model-data agreements (χ2free) akin to cross-validation. Our approach prevents over-fitting of the SAS data and can be used with a newly defined metric, RSAS, for quantitative evaluation of resolution. Together, these metrics (Vc, QR, χ2free and RSAS) provide analytical tools for unbiased and accurate macromolecular structural characterizations in solution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Concentration independence and conformational dependence of Vc.
Figure 2: Defining the power-law relationship between Vc, Rg and protein mass.
Figure 3: Power-law relationship between QR and particle mass allows direct mass determination.
Figure 4: Objective, quantitative evaluation of models using the least median χ2, that is, χ2free.


  1. 1

    Harrison, S. C. Comments on the NIGMS PSI. Structure 15, 1344–1346 (2007)

    CAS  Article  Google Scholar 

  2. 2

    Hura, G. L. et al. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nature Methods 6, 606–612 (2009)

    CAS  Article  Google Scholar 

  3. 3

    Rambo, R. P. & Tainer, J. A. Bridging the solution divide: comprehensive structural analyses of dynamic RNA, DNA, and protein assemblies by small-angle X-ray scattering. Curr. Opin. Struct. Biol. 20, 128–137 (2010)

    CAS  Article  Google Scholar 

  4. 4

    Sosnick, T. R. & Woodson, S. A. New era of molecular structure and dynamics from solution scattering experiments. Biopolymers 95, 503–504 (2011)

    CAS  Article  Google Scholar 

  5. 5

    Glatter, O. & Kratky, O. Small Angle X-Ray Scattering (Academic, 1982)

    Google Scholar 

  6. 6

    Putnam, C. D., Hammel, M., Hura, G. L. & Tainer, J. A. X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q. Rev. Biophys. 40, 191–285 (2007)

    CAS  Article  Google Scholar 

  7. 7

    Jacques, D. A. & Trewhella, J. Small-angle scattering for structural biology—expanding the frontier while avoiding the pitfalls. Protein Sci. 19, 642–657 (2010)

    CAS  Article  Google Scholar 

  8. 8

    Bai, Y., Das, R., Millett, I. S., Herschlag, D. & Doniach, S. Probing counterion modulated repulsion and attraction between nucleic acid duplexes in solution. Proc. Natl Acad. Sci. USA 102, 1035–1040 (2005)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Moore, P. Small-angle scattering. Information content and error analysis. J. Appl. Crystallogr. 13, 168–175 (1980)

    CAS  Article  Google Scholar 

  10. 10

    Rambo, R. P. & Tainer, J. A. Improving small-angle X-ray scattering data for structural analyses of the RNA world. RNA 16, 638–646 (2010)

    CAS  Article  Google Scholar 

  11. 11

    Nishimura, N. et al. Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326, 1373–1379 (2009)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Santiago, J. et al. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J. 60, 575–588 (2009)

    CAS  Article  Google Scholar 

  13. 13

    Stoddard, C. D. et al. Free state conformational sampling of the SAM-I riboswitch aptamer domain. Structure 18, 787–797 (2010)

    CAS  Article  Google Scholar 

  14. 14

    Hammond, J. A., Rambo, R. P. & Kieft, J. S. Multi-domain packing in the aminoacylatable 3′ end of a plant viral RNA. J. Mol. Biol. 399, 450–463 (2010)

    CAS  Article  Google Scholar 

  15. 15

    Orthaber, D., Bergmann, A. & Glatter, O. SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J. Appl. Crystallogr. 33, 218–225 (2000)

    CAS  Article  Google Scholar 

  16. 16

    Mylonas, E. & Svergun, D. I. Accuracy of molecular mass determination of proteins in solution by small-angle X-ray scattering. J. Appl. Crystallogr. 40, s245–s249 (2007)

    CAS  Article  Google Scholar 

  17. 17

    Fischer, H., de Oliveira Neto, M., Napolitano, H. B., Polikarpov, I. & Craievich, A. F. Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. J. Appl. Crystallogr. 43, 101–109 (2010)

    CAS  Article  Google Scholar 

  18. 18

    Rambo, R. P. & Tainer, J. A. Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law. Biopolymers 95, 559–571 (2011)

    CAS  Article  Google Scholar 

  19. 19

    Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000)

    Google Scholar 

  20. 20

    Wyatt, P. J. Light scattering and the absolute characterization of macromolecules. Anal. Chim. Acta 272, 1–40 (1993)

    CAS  Article  Google Scholar 

  21. 21

    Svergun, D., Barberato, C. & Koch, M. H. J. CRYSOL – a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768–773 (1995)

    CAS  Article  Google Scholar 

  22. 22

    Schneidman-Duhovny, D., Hammel, M. & Sali, A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 38, W540–W544 (2010)

    CAS  Article  Google Scholar 

  23. 23

    Brünger, A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992)

    ADS  Article  Google Scholar 

  24. 24

    Brünger, A. T., Clore, G. M., Gronenborn, A. M., Saffrich, R. & Nilges, M. Assessing the quality of solution nuclear magnetic resonance structures by complete cross-validation. Science 261, 328–331 (1993)

    ADS  Article  Google Scholar 

  25. 25

    Rousseeuw, P. J. & Leroy, A. M. Robust Regression and Outlier Detection (Wiley, 1987)

    Google Scholar 

  26. 26

    Jie, Y., Qi, T., Amores, J. & Sebe, N. Toward Robust Distance Metric Analysis for Similarity Estimation (IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006)

    Google Scholar 

  27. 27

    Karplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  29. 29

    de Groot, B. L. et al. Prediction of protein conformational freedom from distance constraints. Proteins 29, 240–251 (1997)

    CAS  Article  Google Scholar 

  30. 30

    Rambo, R. P. & Doudna, J. A. Assembly of an active group II intron–maturase complex by protein dimerization. Biochemistry 43, 6486–6497 (2004)

    CAS  Article  Google Scholar 

  31. 31

    Keel, A. Y., Jha, B. K. & Kieft, J. S. Structural architecture of an RNA that competitively inhibits RNase L. RNA 18, 88–89 (2012)

    CAS  Article  Google Scholar 

  32. 32

    Fulle, S. & Gohlke, H. Analyzing the flexibility of RNA structures by constraint counting. Biophys. J. 94, 4202–4219 (2008)

    ADS  CAS  Article  Google Scholar 

Download references


We thank G. L. Hura, M. Hammel, R. T. Batey, J. Tanamachi and the staff of SIBYLS Beamline 12.3.1 at the Advanced Light Source for discussions and P. Adams for suggestions regarding simulations with CNS. We thank E. Rambo, G. Williams and E. D. Getzoff for manuscript comments. This work is supported in part by funding to foster collaboration with Bruker and the Berkeley Laboratory Directed Research and Development (LDRD) program provided by the Director, Office of Science, US Department of Energy on Novel Technology for Structural Biology. The SIBYLS Beamline 12.3.1 facility and team at the Advanced Light Source is supported by United States Department of Energy program Integrated Diffraction Analysis Technologies (DEAC02-05CH11231) and by National Institutes of Health grant R01GM105404.

Author information




R.P.R. developed the theory and computational algorithms with input from J.A.T. Both J.A.T. and R.P.R. designed the experiments and wrote the paper.

Corresponding authors

Correspondence to Robert P. Rambo or John A. Tainer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains Supplementary Text and Data, Supplementary Figures 1-11, Supplementary Tables 1-2 and Supplementary References. (PDF 2840 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rambo, R., Tainer, J. Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496, 477–481 (2013).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing