Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The ‘obligate diploid’ Candida albicans forms mating-competent haploids

A Corrigendum to this article was published on 18 November 2015

This article has been updated

Abstract

Candida albicans, the most prevalent human fungal pathogen, is considered to be an obligate diploid that carries recessive lethal mutations throughout the genome. Here we demonstrate that C. albicans has a viable haploid state that can be derived from diploid cells under in vitro and in vivo conditions, and that seems to arise through a concerted chromosome loss mechanism. Haploids undergo morphogenetic changes like those of diploids, including the yeast–hyphal transition, chlamydospore formation and a white-opaque switch that facilitates mating. Haploid opaque cells of opposite mating type mate efficiently to regenerate the diploid form, restoring heterozygosity and fitness. Homozygous diploids arise spontaneously by auto-diploidization, and both haploids and auto-diploids show a similar reduction in fitness, in vitro and in vivo, relative to heterozygous diploids, indicating that homozygous cell types are transient in mixed populations. Finally, we constructed stable haploid strains with multiple auxotrophies that will facilitate molecular and genetic analyses of this important pathogen.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: C. albicans haploid and auto-diploid genotypes.
Figure 2: Morphology and mating competency of haploid C. albicans.
Figure 3: Haploid growth in vitro and in vivo.
Figure 4: Auxotrophic haploid strains enable one-step gene deletions.

Change history

  • 18 November 2015

    Nature 494, 55–59 (2013); doi: 10.1038/nature11865 In this Article, there were two errors in allele assignments. In the legend and colour key to Fig. 1b, the allele identity (‘a’ and ‘b’) is inadvertently reversed. Figure 1 of this Corrigendum shows the corrected panel b and legend for the original Fig.

References

  1. van der Walt, J. P. Sexually active strains of Candida albicans and Cryptococcus albidus . Antonie van Leeuwenhoek 33, 246–256 (1967)

    Article  CAS  PubMed  Google Scholar 

  2. Sarachek, A., Rhoads, D. D. & Schwarzhoff, R. H. Hybridization of Candida albicans through fusion of protoplasts. Arch. Microbiol. 129, 1–8 (1981)

    Article  CAS  PubMed  Google Scholar 

  3. Suzuki, T., Nishibayashi, S., Kuroiwa, T., Kanbe, T. & Tanaka, K. Variance of ploidy in Candida albicans . J. Bacteriol. 152, 893–896 (1982)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Olaiya, A. F. & Sogin, S. J. Ploidy determination of Candida albicans . J. Bacteriol. 140, 1043–1049 (1979)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Riggsby, W. S., Torres-Bauza, L. J., Wills, J. W. & Townes, T. M. DNA content, kinetic complexity, and the ploidy question in Candida albicans . Mol. Cell. Biol. 2, 853–862 (1982)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kelly, R., Miller, S. M., Kurtz, M. B. & Kirsch, D. R. Directed mutagenesis in Candida albicans: one-step gene disruption to isolate ura3 mutants. Mol. Cell. Biol. 7, 199–208 (1987)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kurtz, M. B. & Marrinan, J. Isolation of hem3 mutants from Candida albicans by sequential gene disruption. Mol. Gen. Genet. 217, 47–52 (1989)

    Article  CAS  PubMed  Google Scholar 

  8. Magee, P. T., Kakar, S. & Kwon-Chung, K. in Genetic Analysis of Candida albicans by Complementation (ed. Schessinger, D. M. ) 230–233 (American Society of Microbiology, 1983)

    Google Scholar 

  9. Whelan, W. L., Partridge, R. M. & Magee, P. T. Heterozygosity and segregation in Candida albicans . Mol. Gen. Genet. 180, 107–113 (1980)

    Article  CAS  PubMed  Google Scholar 

  10. Jones, T. et al. The diploid genome sequence of Candida albicans . Proc. Natl Acad. Sci. USA 101, 7329–7334 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gräser, Y. et al. Molecular markers reveal that population structure of the human pathogen Candida albicans exhibits both clonality and recombination. Proc. Natl Acad. Sci. USA 93, 12473–12477 (1996)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Bougnoux, M.-E. et al. Mating is rare within as well as between clades of the human pathogen Candida albicans . Fungal Genet. Biol. 45, 221–231 (2008)

    Article  CAS  PubMed  Google Scholar 

  13. Whelan, W. L. & Soll, D. R. Mitotic recombination in Candida albicans: recessive lethal alleles linked to a gene required for methionine biosynthesis. Mol. Gen. Genet. 187, 477–485 (1982)

    Article  CAS  PubMed  Google Scholar 

  14. Sarachek, A. & Weber, D. A. Segregant-defective heterokaryons of Candida albicans . Curr. Genet. 10, 685–693 (1986)

    Article  CAS  PubMed  Google Scholar 

  15. Barton, R. C. & Gull, K. Isolation, characterization, and genetic analysis of monosomic, aneuploid mutants of Candida albicans . Mol. Microbiol. 6, 171–177 (1992)

    Article  CAS  PubMed  Google Scholar 

  16. Janbon, G., Sherman, F. & Rustchenko, E. Monosomy of a specific chromosome determines l-sorbose utilization: a novel regulatory mechanism in Candida albicans . Proc. Natl Acad. Sci. USA 95, 5150–5155 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andaluz, E. et al. Rad52 function prevents chromosome loss and truncation in Candida albicans . Mol. Microbiol. 79, 1462–1482 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Forche, A. et al. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol. 6, e110 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Miller, M. G. & Johnson, A. D. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110, 293–302 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. Soll, D. R., Lockhart, S. R. & Zhao, R. Relationship between switching and mating in Candida albicans . Eukaryot. Cell 2, 390–397 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Magee, B. B. & Magee, P. T. Induction of mating in Candida albicans by construction of MTLa and MTLα strains. Science 289, 310–313 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Hull, C. M., Raisner, R. M. & Johnson, A. D. Evidence for mating of the ‘asexual’ yeast Candida albicans in a mammalian host. Science 289, 307–310 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Bennett, R. J. & Johnson, A. D. Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J. 22, 2505–2515 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Selmecki, A., Forche, A. & Berman, J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans . Science 313, 367–370 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Berman, J. & Hadany, L. Does stress induce (para)sex? Implications for Candida albicans evolution. Trends Genet. 28, 197–203 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Forche, A. et al. Stress alters rates and types of loss of heterozygosity in Candida albicans . mBio 2, e00129–11 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Forche, A. et al. A system for studying genetic changes in Candida albicans during infection. Fungal Genet. Biol. 39, 38–50 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. Solis, N. V. & Filler, S. G. Mouse model of oropharyngeal candidiasis. Nature Protocols 7, 637–642 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Forche, A., Magee, P. T., Selmecki, A., Berman, J. & May, G. Evolution in Candida albicans populations during a single passage through a mouse host. Genetics 182, 799–811 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abbey, D., Hickman, M., Gresham, D. & Berman, J. High-resolution SNP/CGH microarrays reveal the accumulation of loss of heterozygosity in commonly used Candida albicans strains. G3 (Bethesda) 1, 523–530 (2011)

    Article  CAS  Google Scholar 

  31. Mancera, E., Bourgon, R., Brozzi, A., Huber, W. & Steinmetz, L. M. High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 454, 479–485 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tsai, J.-H. & McKee, B. D. Homologous pairing and the role of pairing centers in meiosis. J. Cell Sci. 124, 1955–1963 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. Reedy, J. L., Floyd, A. M. & Heitman, J. Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Curr. Biol. 19, 891–899 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alby, K., Schaefer, D. & Bennett, R. J. Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans . Nature 460, 890–893 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yi, M., Hong, N. & Hong, Y. Generation of medaka fish haploid embryonic stem cells. Science 326, 430–433 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Freed, J. J. & Mezger-Freed, L. Stable haploid cultured cell lines from frog embryos. Proc. Natl Acad. Sci. USA 65, 337–344 (1970)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Elling, U. et al. Forward and reverse genetics through derivation of haploid mouse embryonic stem cells. Cell Stem Cell 9, 563–574 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mortimer, R. K. Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae . Radiat. Res. 9, 312–326 (1958)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Chaffin, W. L. Site selection for bud and germ tube emergence in Candida albicans . Microbiology 130, 431–440 (1984)

    Article  Google Scholar 

  40. Berman, J. & Sudbery, P. E. Candida albicans: a molecular revolution built on lessons from budding yeast. Nature Rev. Genet. 3, 918–932 (2002)

    Article  CAS  PubMed  Google Scholar 

  41. Citiulo, F., Moran, G. P., Coleman, D. C. & Sullivan, D. J. Purification and germination of Candida albicans and Candida dubliniensis chlamydospores cultured in liquid media. FEMS Yeast Res. 9, 1051–1060 (2009)

    Article  CAS  PubMed  Google Scholar 

  42. Lockhart, S. R. et al. In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 162, 737–745 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Slutsky, B. et al. White-opaque transition: a second high-frequency switching system in Candida albicans . J. Bacteriol. 169, 189–197 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Crow, J. & Kimura, M. Evolution in sexual and asexual populations. Am. Nat. 99, 439–450 (1965)

    Article  Google Scholar 

  45. Wang, Y. CDKs and the yeast-hyphal decision. Curr. Opin. Microbiol. 12, 644–649 (2009)

    Article  CAS  PubMed  Google Scholar 

  46. Kelly, M. T. et al. The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Mol. Microbiol. 53, 969–983 (2004)

    Article  CAS  PubMed  Google Scholar 

  47. Zeng, G., Wang, Y.-M. & Wang, Y. Cdc28–Cln3 phosphorylation of Sla1 regulates actin patch dynamics in different modes of fungal growth. Mol. Biol. Cell 23, 3485–3497 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Douglas, L. M., Martin, S. W. & Konopka, J. B. BAR domain proteins Rvs161 and Rvs167 contribute to Candida albicans endocytosis, morphogenesis, and virulence. Infect. Immun. 77, 4150–4160 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Noble, S. M., French, S., Kohn, L. A., Chen, V. & Johnson, A. D. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nature Genet. 42, 590–598 (2010)

    Article  CAS  PubMed  Google Scholar 

  50. Morschhäuser, J., Michel, S. & Staib, P. Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination. Mol. Microbiol. 32, 547–556 (1999)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank M. McClellan, K. Matter, E. Voigt and F. Y. Chan for technical assistance, S. Filler and J. Becker for work involving mouse models of infection, F. M. Chang and T. Y. Ou for contributing to the isolation of the progenitor of GZY792, and L. Burrack, J. Heitman, M. Kupiec, K. Nielsen and N. Pavelka for comments on the manuscript. M.A.H. is supported by an NRSA post-doctoral fellowship (F32GM096536-02). A.F. is supported by the National Institute of Allergy and Infectious Diseases (NIAID) (R15-AI090633-01A1 and R01 AI0624273). M.P.H. is supported by a training grant for Graduate Assistance in Areas of National Need (P200A100100). B.D.H. is supported by the National Institute of Dental & Craniofacial Research (T32DE007288). R.J.B. is supported by the NIAID (AI081560 and AI081704) and a PATH Award from the Burroughs Wellcome Fund. Y.W. is supported by Agency for Science, Technology, & Research, Singapore. J.B. is supported by the NIAID (AI0624273).

Author information

Authors and Affiliations

Authors

Contributions

M.A.H. performed flow cytometry analysis, SNP/CGH hybridizations, species identification, white-opaque switching and mating assays, and in vitro growth assays. Y.W. and G.Z. designed and analysed auxotrophs, morphogenesis mutants and in vivo growth experiments; G.Z. constructed the mutants; Y.-M.W. collected isolates post-in vivo. A.F. and C.-h.S. initially isolated haploid/homozygous isolates. D.A. developed the flow cytometry analysis and SNP/CGH pipelines. M.P.H. performed virulence and in vivo competition assays. B.D.H. collected and analysed cell and nuclear size data and budding patterns. M.A.H. and J.B. assembled the data and wrote the manuscript with editorial input from A.F., R.J.B. and Y.W.

Corresponding author

Correspondence to Judith Berman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-10 and Supplementary Table 1. (PDF 1564 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hickman, M., Zeng, G., Forche, A. et al. The ‘obligate diploid’ Candida albicans forms mating-competent haploids. Nature 494, 55–59 (2013). https://doi.org/10.1038/nature11865

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11865

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing