Article

Eemian interglacial reconstructed from a Greenland folded ice core

Received:
Accepted:
Published online:

Abstract

Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling (‘NEEM’) ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 ± 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 ± 250 metres, reaching surface elevations 122,000 years ago of 130 ± 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.

  • Subscribe to Nature for full access:

    $199

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    , , , & Millennial-scale variability during the last glacial: the ice core record. Quat. Sci. Rev. 29, 2828–2838 (2010)

  2. 2.

    et al. A 60 000 year Greenland stratigraphic ice core chronology. Clim. Past 4, 47–57 (2008)

  3. 3.

    et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004)

  4. 4.

    et al. One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444, 195–198 (2006)

  5. 5.

    et al. Glacial–interglacial and millennial-scale variations in the atmospheric nitrous oxide concentration during the last 800,000 years. Quat. Sci. Rev. 29, 182–192 (2010)

  6. 6.

    et al. Synchronising EDML and NorthGRIP ice cores using δ18O of atmospheric oxygen (δ18Oatm) and CH4 measurements over MIS5 (80–123 kyr). Quat. Sci. Rev. 29, 222–234 (2010)

  7. 7.

    et al. Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland. J. Geophys. Res. 116, D06108 10.1029/2010JD014311 (2011)

  8. 8.

    , , & Investigating the past and recent δ18O-accumulation relationship seen in Greenland ice cores. Clim. Past 8, 2053–2059 (2012)

  9. 9.

    et al. A tentative reconstruction of the last interglacial and glacial inception in Greenland based on new gas measurements in the Greenland Ice Core Project (GRIP) ice core. J. Geophys. Res. 108, 4563 10.1029/2002jd003147 (2003)

  10. 10.

    , , , & Chronology reconstruction for the disturbed bottom section of the GISP2 and the GRIP ice cores: implications for Termination II in Greenland. J. Geophys. Res. 111, D02101 10.1029/2005JD006032 (2006)

  11. 11.

    et al. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J. Quat. Sci. 16, 299–307 (2001)

  12. 12.

    et al. “EDML1”: a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years. Clim. Past 3, 475–484 (2007)

  13. 13.

    , , , & A novel method to study the phase relationship between Antarctic and Greenland climate. Geophys. Res. Lett. 30, 1899 10.1029/2003GL017838 (2003)

  14. 14.

    et al. Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP. Nature 366, 443–445 (1993)

  15. 15.

    et al. Advanced multi-frequency radar instrumentation for polar research. IEEE Trans. Geosci. Rem. Sens. (in the press)

  16. 16.

    et al. The CReSIS radar suite for measurements of the ice sheets and sea ice during Operation Ice Bridge. Am. Geophys. Un. Fall Meet. , abstr. C44A-02 (2010)

  17. 17.

    & At what depth is the Eemian layer expected to be found at NEEM? Ann. Glaciol. 48, 100–102 (2008)

  18. 18.

    & in The Physical Basis of Ice Sheet Modelling (ed. ) 31–43 (Proc. Vancouver Symp., August 1987, IAHS Publ. No. 170, 1987)

  19. 19.

    & Derivation of flow-law properties from bore-hole tilt data: discussion of the Dye 3, Camp Century, and Byrd Station bore-hole results. Ann. Glaciol. 12, 200–201 (1989)

  20. 20.

    & Mechanical properties of Dye 3 Greenland deep ice cores. Ann. Glaciol. 5, 1–8 (1984)

  21. 21.

    Laboratory studies on relationships between ice crystal size and flow rate. Cold Reg. Sci. Technol. 10, 31–42 (1984)

  22. 22.

    , & Modeling the densification of polar firn including heat diffusion: application to close-off characteristics and gas isotopic fractionation for Antarctica and Greenland sites. J. Geophys. Res. 108, 4792 10.1029/2002JD003319 (2003)

  23. 23.

    , & Thermal fractionation of air in polar firn by seasonal temperature gradients. Geochem. Geophys. Geosyst. 2, 1048 10.1029/2000GC000146 (2001)

  24. 24.

    et al. Abrupt change of Antarctic moisture origin at the end of Termination II. Proc. Natl Acad. Sci. USA 107, 12091–12094 (2010)

  25. 25.

    & A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18, 1087 10.1029/2003PA000920 (2003)

  26. 26.

    et al. The last deglaciation: timing the bipolar seesaw. Clim. Past 7, 671–683 (2011)

  27. 27.

    et al. Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation. Nature Geosci. 4, 46–49 (2011)

  28. 28.

    et al. The local insolation signature of air content in Antarctic ice. A new step toward an absolute dating of ice records. Earth Planet. Sci. Lett. 261, 337–349 (2007)

  29. 29.

    , & Stability of the astronomical frequencies over the Earth’s history for paleoclimate studies. Science 255, 560–566 (1992)

  30. 30.

    , , , & Significant contribution of insolation to Eemian melting of the Greenland ice sheet. Nature Geosci. 4, 679–683 (2011)

  31. 31.

    , , & Air content along the Greenland Ice Core Project core: a record of surface climatic parameters and elevation in central Greenland. J. Geophys. Res. 102, 26607–26613 (1997)

  32. 32.

    et al. Holocene thinning of the Greenland ice sheet. Nature 461, 385–388 (2009)

  33. 33.

    , & A new ice thickness and bed data set for the Greenland ice sheet 1. Measurement, data reduction, and errors. J. Geophys. Res. D 106, 33773–33780 (2001)

  34. 34.

    , , , & Ice thinning, upstream advection, and non-climatic biases for the upper 89% of the EDML ice core from a nested model of the Antarctic ice sheet. Clim. Past 3, 577–589 (2007)

  35. 35.

    Basal Melting and Eemian Ice Along the Main Ice Ridge in Northern Greenland. Thesis, Univ. Copenhagen (2009); available at .

  36. 36.

    et al. Simulating arctic climate warmth and icefield retreat in the last interglaciation. Science 311, 1751–1753 (2006)

  37. 37.

    et al. A multi-model assessment of last interglacial temperatures. Clim. Past Discuss. 8, 3657–3691 (2012)

  38. 38.

    et al. Chironomids record terrestrial temperature changes throughout Arctic interglacials of the past 200,000 yr. Geol. Soc. Am. Bull. 123, 1275–1287 (2011)

  39. 39.

    , , & Interglacial and Holocene temperature reconstructions based on midge remains in sediments of two lakes from Baffin Island, Nunavut, Arctic Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 236, 107–124 (2006)

  40. 40.

    & Does the Agulhas Current amplify global temperatures during super-interglacials? J. Quat. Sci. 25, 839–843 (2010)

  41. 41.

    & Melting of Northern Greenland during the last interglacial. Cryosphere Discuss. 5, 3517–3539 (2011)

  42. 42.

    et al. Sensitivity of interglacial Greenland temperature and δ18O: ice core data, orbital and increased CO2 climate simulations. Clim. Past 7, 1041–1059 (2011)

  43. 43.

    et al. EPICA Dome C record of glacial and interglacial intensities. Quat. Sci. Rev. 29, 113–128 (2010)

  44. 44.

    , , , & Probabilistic assessment of sea level during the last interglacial stage. Nature 462, 863–867 (2009)

  45. 45.

    & Ice volume and sea level during the last interglacial. Science 337, 216–219 (2012)

  46. 46.

    et al. in Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere (ed. AMAP) Ch. 8 (Arctic Monitoring and Assessment Programme (AMAP), Oslo, 2011)

  47. 47.

    , , , & Where might we find evidence of a Last Interglacial West Antarctic Ice Sheet collapse in Antarctic ice core records? Glob. Planet. Change 88–89, 64–75 (2012)

  48. 48.

    et al. Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science 331, 1592–1595 (2011)

  49. 49.

    & Total gas content and surface elevation of polar ice sheets. Nature 281, 289–291 (1979)

  50. 50.

    et al. Air content paleo record in the Vostok ice core (Antarctica): a mixed record of climatic and glaciological parameters. J. Geophys. Res. 99, 10565–10576 (1994)

Download references

Acknowledgements

We thank the many persons involved in logistics, drill developments and drilling, and ice-core processing and analysis in the field and in our laboratories. NEEM is directed and organized by the Centre of Ice and Climate at the Niels Bohr Institute and US NSF, Office of Polar Programs. It is supported by funding agencies and institutions in Belgium (FNRS-CFB and FWO), Canada (NRCan/GSC), China (CAS), Denmark (FIST), France (IPEV, CNRS/INSU, CEA and ANR), Germany (AWI), Iceland (RannIs), Japan (NIPR), South Korea (KOPRI), The Netherlands (NWO/ALW), Sweden (VR), Switzerland (SNF), the United Kingdom (NERC) and the USA (US NSF, Office of Polar Programs) and the EU Seventh Framework programmes Past4Future and WaterundertheIce. NASA is acknowledged for the OIB 2011 programme.

Author information

Author notes

    • A. Aldahan
    • , T. Jenk
    • , P. Sperlich
    •  & K. Steffen

    Present addresses: Department of Geology, United Arab Emirates University, Al Ain, United Arab Emirates (A.A.); Paul Scherrer Institute, OFLB/109, 5232 Villigen – PSI, Switzerland (T.J.); Max-Would Planck-Institute for Biogeochemistry, Hans-Knöll-Strasse 10, 07745 Jena, Germany (P.S.); Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland; Institute for Atmosphere and Climate Science (IAC), Swiss Federal Institute of Technology (ETH), Universitaetstrasse 16, CH-8092 Zurich, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole polytechnique fédérale de Lausanne (EPFL), Station 2, CH-1015 Lausanne, Switzerland (K.S.).

Affiliations

  1. Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen K, Denmark.

    • D. Dahl-Jensen
    • , D. Balslev-Clausen
    • , T. Blunier
    • , S. L. Buchardt
    • , C. Buizert
    • , H. B. Clausen
    • , I. Cvijanovic
    • , P. Ditlevsen
    • , V. Gkinis
    • , A. Grinsted
    • , M. Guillevic
    • , S. B. Hansen
    • , C. S. Hvidberg
    • , T. Jenk
    • , S. J. Johnsen
    • , N. B. Karlsson
    • , E. Kettner
    • , H. A. Kjær
    • , P. L. Langen
    • , L. B. Larsen
    • , C. Panton
    • , T. Popp
    • , S. O. Rasmussen
    • , C. Reutenauer
    • , M. Rubino
    • , A. M. Z. Schmidt
    • , I. Seierstad
    • , S. Sheldon
    • , S. B. Simonsen
    • , J. Sjolte
    • , A. M. Solgaard
    • , P. Sperlich
    • , H. C. Steen-Larsen
    • , J. P. Steffensen
    • , C. Stowasser
    • , A. Svensson
    • , P. Vallelonga
    • , B. Vinther
    •  & M. Winstrup
  2. Thayer School of Engineering, Dartmouth University, Hanover, New Hampshire 03755, USA.

    • M. R. Albert
    •  & K. Keegan
  3. Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden.

    • A. Aldahan
    • , A.-M. Berggren
    • , D. Samyn
    •  & A. S. Sturevik
  4. Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka 940-2188, Japan.

    • N. Azuma
    •  & D. Samyn
  5. Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland.

    • M. Baumgartner
    • , M. Bigler
    • , O. Eicher
    • , H. Fischer
    • , G. Gfeller
    • , D. Leuenberger
    • , M. Leuenberger
    • , O. Mini
    • , A. Schilt
    • , J. Schwander
    • , S. Schüpbach
    • , T. F. Stocker
    •  & G. van der Wel
  6. IWR, University of Heidelberg, Speyerer Straße 6, D-69115 Heidelberg, Germany.

    • T. Binder
  7. Natural Resources Canada, Geological Survey of Canada, 601 Booth Street, Ottawa K1A 0E8, Canada.

    • J. C. Bourgeois
    • , D. A. Fisher
    •  & J. Zheng
  8. College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, Oregon 97331-5503, USA.

    • E. J. Brook
    • , C. Buizert
    • , J. L. Rosen
    •  & A. Schilt
  9. Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, IPSL, Bâtiment 701 L’Orme des Merisiers, CEA Saclay, 91 191 Gif sur Yvette, France.

    • E. Capron
    • , M. Guillevic
    • , J. Jouzel
    • , A. Landais
    • , V. Masson-Delmotte
    • , K. Pol
    • , F. Prié
    •  & H. C. Steen-Larsen
  10. British Antarctic Survey, Madingley Road, Cambridge CB3 0ET, UK.

    • E. Capron
    • , L. G. Fleet
    • , R. Mulvaney
    • , K. Pol
    •  & E. W. Wolff
  11. LGGE, UJF-Grenoble 1, CNRS, 64 rue Molière, BP 96, 38402 St Martin d’Hères, France.

    • J. Chappellaz
    • , P. Martinerie
    • , M. Montagnat-Rentier
    • , J.-R. Petit
    • , A. Quiquet
    • , D. Raynaud
    •  & C. Ritz
  12. Korea Polar Research Institute, Songdo Techno Park, 7-50, Songdo-dong, Yeonsu-gu, Incheon 406-840, South Korea.

    • J. Chung
    •  & S. D. Hur
  13. Department of Geography, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK.

    • S. M. Davies
  14. INSTAAR, University of Colorado, Boulder, Colorado 80309, USA.

    • V. Gkinis
    • , T. R. Jones
    • , B. H. Vaughn
    •  & J. W. C. White
  15. CReSIS, University of Kansas, Nichols Hall, 2335 Irving Hill Road, Lawrence, Kansas 66045, USA.

    • S. Gogineni
    • , C. Leuschen
    • , J. Li
    •  & J. Paden
  16. National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan.

    • K. Goto-Azuma
    • , M. Hirabayashi
    • , K. Kawamura
    • , T. Kuramoto
    •  & J. Uetake
  17. Institute of Earth and Sciences, University of Iceland, Sturlugata 7, IS-107, Reykjavik, Iceland.

    • H. Gudlaugsdottir
    •  & A. Sveinbjörnsdottir
  18. Department of Physical Geography and Quaternary Geology, Stockholm University, S-106 91 Stockholm, Sweden.

    • M. Hansson
    •  & Y. Iizuka
  19. Department of Ocean Sciences, Inha University, 100 Inha-ro, Nam-gu, Incheon 402-751, South Korea.

    • S. Hong
  20. Earth System Sciences and Department of Geography, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.

    • P. Huybrechts
    •  & O. Rybak
  21. Institute of Mountain Science, Shinshu University, 3-1-1, Asahi, Matsumoto City 390-8621, Japan.

    • T. Kuramoto
  22. Alfred Wegener Institute for Polar and Marine Research, PO Box 12 01 61, D-27515 Bremerhaven, Germany.

    • S. Kipfstuhl
    • , P. Köhler
    • , T. Laepple
    • , H. Miller
    • , D. Steinhage
    • , A. Wegner
    • , I. Weikusat
    •  & F. Wilhelms
  23. Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195-1310, USA.

    • M. Koutnik
    •  & E. Waddington
  24. Arctic and Antarctic Research Institute, St Petersburg 199397, Russia.

    • V. Lipenkov
  25. Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512, USA.

    • O. J. Maselli
    •  & J. R. McConnell
  26. Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan.

    • Y. Iizuka
    •  & A. Miyamoto
  27. Department of Geology, Lund University, Sölvegatan 12, SE-22362 Lund, Sweden.

    • R. Muscheler
    •  & J. Sjolte
  28. Scripps Institution of Oceanography, UC San Diego, La Jolla, California 92093, USA.

    • A. J. Orsi
    •  & J. P. Severinghaus
  29. Laboratoire de Glaciologie, Université Libre de Bruxelles, CP160/03, Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium.

    • F. Pattyn
    •  & J.-L. Tison
  30. Tandem Laboratory, Uppsala University, Lägerhyddsvägen 1, 751 20 Uppsala, Sweden.

    • G. Possnert
  31. Institute for Marine and Atmospheric Research Utrecht (IMAU), Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.

    • M. Prokopiou
    • , T. Röckmann
    • , C. J. Sapart
    •  & R. S. W. van de Wal
  32. State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China.

    • J. Ren
    •  & C. Xiao
  33. Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, 3195 Victoria, Australia.

    • M. Rubino
  34. Earth and Environment Systems Institute, Penn State University, 2217 EES Building, University Park, Pennsylvania 16802, USA.

    • T. Sowers
  35. CIRES, University of Colorado, 216 UCB Boulder, Colorado 80309-0216, USA.

    • K. Steffen
  36. University of East Anglia, Norwich, Norfolk NR4 7TJ, UK.

    • W. T. Sturges
  37. UJF – Grenoble 1/CNRS, Grenoble Image Parole Signal Automatique (GIPSA-lab), UMR 5216, BP 46, 38402 St Martin d’Hères, France.

    • E. Witrant
  38. China Institute of Climate System, Chinese Academy of Meteorological Sciences, Beijing 100081, China.

    • C. Xiao

Consortia

  1. NEEM community members

Authors

    Contributions

    All authors contributed to the discussions that led to the results presented in the paper. M.R.A., A.-M.B., C.B., K. Keegan, P.M., S.B.S. and E.W. performed analysis and interpretation of the firn processes; A.A., D.B.-C., M. Baumgartner, M. Bigler, T. Blunier, E.J.B., E.C., J. Chappellaz, J. Chung, O.E., H.F., L.G.F., G.G., V.G., K.G.-A., M.H., Y.I., T.J., T.R.J., J.J., K. Kawamura, E.K., H.A.K., T.K., A.L., D.L., V.L., O.J.M., V.M.-D., J.R.M., O.M., R. Muscheler, J.-R.P., K.P., G.P., T.P., M.P., D.R., C.R., T.R., J.L.R., M.R., C.J.S., A.S., J.S., S. Schüpbach, J. P. Severinghaus, T.S., P.S., T.F.S., C.S., W.T.S., A.S.S., A. Sveinbjörnsdottir, A. Svensson, J.U., P.V., G.v.d.W., B.H.V., B.V., A.W. and F.W. were involved in the data measurements described in detail in Supplementary Information; N.A., T. Binder, S.K., A.M., M.M.-R., D.S., E.W. and I.W. contributed to the understanding of ice rheology; J.C.B. and A.M.Z.S. investigated the biology of the ice cores; S.L.B., P.H., M.K., F.P., A.Q., C.R., O.R., A.M.S. and R.S.W.v.d.W. produced ice-sheet models; H.B.C., S.M.D., D.A.F., A.G., H.G., M.G., S.J.J., P.K., A.L., T.L., M.L., S.O.R., I.S., J. P. Steffensen and M.W. participated in the dating of the NEEM ice core; I.C., P.D., P.L.L. and J.S. produced atmosphere models; D.D.-J. analysed the data; J.W.C.W. and E.W.W. put the discussion into the text; S.G., N.B.K., C.L., J.L., J.P., C. P. and D.S. participated in obtaining and interpreting the RES images; S.B.H. and S.S. were the chief mechanic and electronic engineer on the deep ice-core drill; M.G., S.H., S.D.H., H.M., R. Mulvaney, J.R. and C.X. participated in the planning of the NEEM project; L.B.L. and C.S.H. used a GPS net to determine the surface velocities; E.C., A.L., A.J.O., F.P., H.C.S.-L., K.S. and J.Z. participated in measuring temperatures and isotopes in the firn and air; J.-L.T. was involved in the interpretation of the basal ice.

    Competing interests

    The author declare no competing financial interests.

    Corresponding author

    Correspondence to D. Dahl-Jensen.

    Supplementary information

    PDF files

    1. 1.

      Supplementary Information

      This file contains Supplementary Text and Data (see Content for details), Supplementary Figures 1-10, Supplementary Tables 1-2 and additional references.

    Excel files

    1. 1.

      Supplementary Data

      This file contains the data used in the paper. It contains 7 separate sheets, each of which is referred to in the Supplementary Information file.