Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An over-massive black hole in the compact lenticular galaxy NGC 1277

Abstract

Most massive galaxies have supermassive black holes at their centres, and the masses of the black holes are believed to correlate with properties of the host-galaxy bulge component1. Several explanations have been proposed for the existence of these locally established empirical relationships, including the non-causal, statistical process of galaxy–galaxy merging2, direct feedback between the black hole and its host galaxy3, and galaxy–galaxy merging and the subsequent violent relaxation and dissipation4. The empirical scaling relations are therefore important for distinguishing between various theoretical models of galaxy evolution5,6, and they furthermore form the basis for all black-hole mass measurements at large distances. Observations have shown that the mass of the black hole is typically 0.1 per cent of the mass of the stellar bulge of the galaxy7,8. Until now, the galaxy with the largest known fraction of its mass in its central black hole (11 per cent) was the small galaxy NGC 4486B1,9. Here we report observations of the stellar kinematics of NGC 1277, which is a compact, lenticular galaxy with a mass of 1.2 × 1011 solar masses. From the data, we determine that the mass of the central black hole is 1.7 × 1010 solar masses, or 59 per cent of its bulge mass. We also show observations of five other compact galaxies that have properties similar to NGC 1277 and therefore may also contain over-massive black holes. It is not yet known if these galaxies represent a tail of a distribution, or if disk-dominated galaxies fail to follow the usual black-hole mass scaling relations4,10.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Optical HST image of the compact lenticular galaxy NGC 1277.
Figure 2: Line-of-sight stellar kinematics of NGC 1277.
Figure 3: The correlation between black-hole mass and near-infrared bulge luminosity, .

References

  1. 1

    Gültekin, K. et al. The M-σ and M-L relations in galactic bulges, and determinations of their intrinsic scatter. Astrophys. J. 698, 198 (2009)

    ADS  Article  Google Scholar 

  2. 2

    Jahnke, K. & Macciò, A. V. The non-causal origin of the black-hole-galaxy scaling relations. Astrophys. J. 734, 92 (2011)

    ADS  Article  Google Scholar 

  3. 3

    Fabian, A. C. The obscured growth of massive black holes. Mon. Not. R. Astron. Soc. 308, L39–L43 (1999)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Kormendy, J., Bender, R. & Cornell, M. E. Supermassive black holes do not correlate with galaxy disks or pseudobulges. Nature 469, 374–376 (2011)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Croton, D. J. et al. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 365, 11–28 (2006)

    ADS  Article  Google Scholar 

  6. 6

    Somerville, R. S., Hopkins, P. F., Cox, T. J., Robertson, B. E. & Hernquist, L. A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. Mon. Not. R. Astron. Soc. 391, 481–506 (2008)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Häring, N. & Rix, H.-W. On the black hole mass-bulge mass relation. Astrophys. J. 604, L89–L92 (2004)

    ADS  Article  Google Scholar 

  8. 8

    Sani, E., Marconi, A., Hunt, L. K. & Risaliti, G. The Spitzer/IRAC view of black hole-bulge scaling relations. Mon. Not. R. Astron. Soc. 413, 1479–1494 (2011)

    ADS  Article  Google Scholar 

  9. 9

    Magorrian, J. et al. The demography of massive dark objects in galaxy centers. Astron. J. 115, 2285–2305 (1998)

    ADS  Article  Google Scholar 

  10. 10

    Nowak, N. et al. Do black hole masses scale with classical bulge luminosities only? The case of the two composite pseudo-bulge galaxies NGC 3368 and NGC 3489. Mon. Not. R. Astron. Soc. 403, 646–672 (2010)

    ADS  Article  Google Scholar 

  11. 11

    Hill, G. J. et al. Hobby-Eberly Telescope low-resolution spectrograph. Proc. SPIE. 3355, 375–386 (1998)

    ADS  Article  Google Scholar 

  12. 12

    Schwarzschild, M. A numerical model for a triaxial stellar system in dynamical equilibrium. Astrophys. J. 232, 236–247 (1979)

    ADS  Article  Google Scholar 

  13. 13

    van den Bosch, R. C. E., van de Ven, G., Verolme, E. K., Cappellari, M. & de Zeeuw, P. T. Triaxial orbit based galaxy models with an application to the (apparent) decoupled core galaxy NGC 4365. Mon. Not. R. Astron. Soc. 385, 647–666 (2008)

    ADS  Article  Google Scholar 

  14. 14

    van den Bosch, R. C. E. & de Zeeuw, P. T. Estimating black hole masses in triaxial galaxies. Mon. Not. R. Astron. Soc. 401, 1770–1780 (2010)

    ADS  Article  Google Scholar 

  15. 15

    Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563 (1996)

    ADS  CAS  Article  Google Scholar 

  16. 16

    McConnell, N. J. et al. Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies. Nature 480, 215–218 (2011)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Reines, A. E., Sivakoff, G. R., Johnson, K. E. & Brogan, C. L. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10. Nature 470, 66–68 (2011)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Merritt, D., Ferrarese, L. & Joseph, C. L. No supermassive black hole in M33? Science 293, 1116–1118 (2001)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Greene, J. E. et al. Precise black hole masses from megamaser disks: black hole-bulge relations at low mass. Astrophys. J. 721, 26–45 (2010)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Cid Fernandes, R., Mateus, A., Sodré, L., Stasińska, G. & Gomes, J. M. Semi-empirical analysis of Sloan Digital Sky Survey galaxies – I. Spectral synthesis method. Mon. Not. R. Astron. Soc. 358, 363–378 (2005)

    ADS  Article  Google Scholar 

  21. 21

    van Dokkum, P. G. et al. Confirmation of the remarkable compactness of massive quiescent galaxies at z  2.3: early-type galaxies did not form in a simple monolithic collapse. Astrophys. J. 677, L5–L8 (2008)

    ADS  Article  Google Scholar 

  22. 22

    van Dokkum, P. G., Kriek, M. & Franx, M. A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186. Nature 460, 717–719 (2009)

    ADS  CAS  Article  Google Scholar 

  23. 23

    van der Wel, A. et al. The majority of compact massive galaxies at z  2 are disk dominated. Astrophys. J. 730, 38 (2011)

    ADS  Article  Google Scholar 

  24. 24

    Jarrett, T. H. et al. 2MASS extended source catalog: overview and algorithms. Astron. J. 119, 2498–2531 (2000)

    ADS  Article  Google Scholar 

  25. 25

    Pahre, M. A., Djorgovski, S. G. & de Carvalho, R. R. Near-infrared imaging of early-type galaxies. III. The near-infrared fundamental plane. Astron. J. 116, 1591–1605 (1998)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed structural decomposition of galaxy images. Astron. J. 124, 266–293 (2002)

    ADS  Article  Google Scholar 

  27. 27

    Cappellari, M. & Emsellem, E. Parametric recovery of line-of-sight velocity distributions from absorption-line spectra of galaxies via penalized likelihood. Publ. Astron. Soc. Pacif. 116, 138–147 (2004)

    ADS  Article  Google Scholar 

  28. 28

    van der Marel, R. P. & Franx, M. A new method for the identification of non-Gaussian line profiles in elliptical galaxies. Astrophys. J. 407, 525–539 (1993)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

K. Gebhardt and J.L.W. are supported by the US National Science Foundation (NSF-0908639, AST-1102845). K. Gültekin acknowledges support provided by the US National Aeronautics Space Administration (GO0-11151X, G02-13111X) and the Space Telescope Science Institute (HST-GO-12557.01-A). The Hobby-Eberly Telescope is a joint project of the University of Texas at Austin, the Pennsylvania State University, Ludwig-Maximilians-Universität München and Georg-August-Universität Göttingen. The Hobby-Eberly Telescope is named in honour of its principal benefactors, William P. Hobby and Robert E. Eberly.

Author information

Affiliations

Authors

Contributions

R.C.E.v.d.B. designed the survey and carried out the data analysis and the modelling. R.C.E.v.d.B. and G.v.d.V. wrote the manuscript. A.v.d.W. carried out the image analysis. All authors contributed to the interpretation of the observations and the writing of the paper.

Corresponding author

Correspondence to Remco C. E. van den Bosch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-4, Supplementary Figures 1-3, Supplementary Tables 1-2 and additional references. (PDF 533 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van den Bosch, R., Gebhardt, K., Gültekin, K. et al. An over-massive black hole in the compact lenticular galaxy NGC 1277. Nature 491, 729–731 (2012). https://doi.org/10.1038/nature11592

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing