Microbial engineering for the production of advanced biofuels

Abstract

Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The production of advanced biofuels.
Figure 2: Metabolic pathways used for the production of alcohol-based biofuels.
Figure 3: Metabolic pathways used for the production of isoprenoid-based biofuels.
Figure 4: Metabolic pathways used for the production of fatty-acid- and polyketide-derived biofuels.
Figure 5: Synthetic biology tools are used to maximize the production of biofuels from hosts.

References

  1. 1

    Stephanopoulos, G. Challenges in engineering microbes for biofuels production. Science 315, 801–804 (2007).

    CAS  Article  ADS  Google Scholar 

  2. 2

    Kerr, R. Global warming is changing the world. Science 316, 188–190 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Fortman, J. L. et al. Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol. 26, 375–381 (2008).

    CAS  Article  Google Scholar 

  4. 4

    Atsumi, S., Hanai, T. & Liao, J. C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86–89 (2008). This paper describes the rerouting of the E. coli amino-acid biosynthetic pathway for the overproduction of a variety of long-chain or higher alcohols.

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Keasling, J. D. Manufacturing molecules through metabolic engineering. Science 330, 1355–1358 (2010).

    CAS  Article  ADS  Google Scholar 

  6. 6

    Nielsen, J. & Keasling, J. D. Synergies between synthetic biology and metabolic engineering. Nature Biotechnol. 29, 693–695 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Lee, S. K. et al. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 19, 556–563 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Peralta-Yahya, P. P. & Keasling, J. D. Advanced biofuel production in microbes. Biotechnol. J. 5, 147–162 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Lee, S. Y. et al. Fermentative butanol production by Clostridia. Biotechnol. Bioeng. 101, 209–228 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Qureshi, N. & Blaschek, H. P. Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation. Biotechnol. Prog. 15, 594–602 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Ezeji, T. C., Qureshi, N. & Blaschek, H. P. Production of acetone butanol (AB) from liquefied corn starch, a commercial substrate, using Clostridium beijerinckii coupled with product recovery by gas stripping. J. Ind. Microbiol. Biotechnol. 34, 771–777 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Malaviya, A., Jang, Y. S. & Lee, S. Y. Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Appl. Microbiol. Biotechnol. 93, 1485–1494 (2011).

    Article  CAS  Google Scholar 

  13. 13

    Kopke, M. et al. Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl Acad. Sci. USA 107, 13087–13092 (2010).

    CAS  Article  ADS  Google Scholar 

  14. 14

    Ezeji, T. et al. Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl. Microbiol. Biotechnol. 85, 1697–1712 (2009).

    Article  CAS  Google Scholar 

  15. 15

    Lutke-Eversloh, T. & Bahl, H. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr. Opin. Biotechnol. 22, 634–647 (2011).

    Article  CAS  Google Scholar 

  16. 16

    Atsumi, S. et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10, 305–311 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Steen, E. J. et al. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb. Cell Fact. 7, 36 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Nielsen, D. R. et al. Engineering alternative butanol production platforms in heterologous bacteria. Metab. Eng. 11, 262–273 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Berezina, O. V. et al. Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl. Microbiol. Biotechnol. 87, 635–646 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Lan, E. I. & Liao, J. C. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc. Natl Acad. Sci. USA 109, 6018–6023 (2012).

    CAS  Article  ADS  Google Scholar 

  21. 21

    Bond-Watts, B. B., Bellerose, R. J. & Chang, M. C. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nature Chem. Biol. 7, 222–227 (2011). In this study, the authors assemble a synthetic butanol pathway in E. coli by choosing enzymes from different organisms on the basis of their biochemical properties.

    CAS  Article  Google Scholar 

  22. 22

    Shen, C. R. et al. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl. Environ. Microbiol. 77, 2905–2915 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Yan, Y. & Liao, J. C. Engineering metabolic systems for production of advanced fuels. J. Ind. Microbiol. Biotechnol. 36, 471–479 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Smith, K. M., Cho, K. M. & Liao, J. C. Engineering Corynebacterium glutamicum for isobutanol production. Appl. Microbiol. Biotechnol. 87, 1045–1055 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Chen, X. et al. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol. Biofuels 4, 21 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Higashide, W. et al. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl. Environ. Microbiol. 77, 2727–2733 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Atsumi, S., Higashide, W. & Liao, J. C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nature Biotechnol. 27, 1177–1180 (2009).

    CAS  Article  Google Scholar 

  28. 28

    Huo, Y. X. et al. Conversion of proteins into biofuels by engineering nitrogen flux. Nature Biotechnol. 29, 346–351 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Li, H. et al. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335, 1596 (2012). This paper presents the production of isobutanol in Ralstonia from CO 2 by using electricity.

    CAS  Article  ADS  Google Scholar 

  30. 30

    Kirby, J. & Keasling, J. D. Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu. Rev. Plant Biol. 60, 335–355 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Harvey, B. G., Wright, M. E. & Quintana, R. L. High-density renewable fuels based on the selective dimerization of pinenes. Energy Fuels 24, 267–273 (2010).

    CAS  Article  Google Scholar 

  32. 32

    Kuzuyama, T. Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci. Biotechnol. Biochem. 66, 1619–1627 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Banerjee, A. et al. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit. Rev. Biotechnol. 22, 245–279 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Tsukahara, K. et al. Treatment of liquid fraction separated from liquidized food waste in an upflow anaerobic sludge blanket reactor. J. Biosci. Bioeng. 87, 554–556 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Martin, V. J. et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnol. 21, 796–802 (2003).

    CAS  Article  Google Scholar 

  36. 36

    Ro, D. K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Tsuruta, H. et al. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS ONE 4, e4489 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Westfall, P. J. et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc. Natl Acad. Sci. USA 109, E111–E118 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Leonard, E. et al. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc. Natl Acad. Sci. USA 107, 13654–13659 (2010).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Ajikumar, P. K. et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330, 70–74 (2010).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Renninger, N. & McPhee, D. Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same. US patent 7,399,323 (2008).

  42. 42

    Rude, M. A. & Schirmer, A. New microbial fuels: a biotech perspective. Curr. Opin. Microbiol. 12, 274–281 (2009).

    CAS  Article  Google Scholar 

  43. 43

    Ubersax, J. & Platt, D. Genetically modified microbes producing isoprenoids patent world 1,414,52 A1 (2010).

  44. 44

    Peralta-Yahya, P. P. et al. Identification and microbial production of a terpene-based advanced biofuel. Nature Commun. 2, 483 (2011). In this paper, the authors identify bisabolane as a biosynthetic diesel and overproduce its immediate precursor, the isoprenoid bisabolene, in E. coli and S. cerevisiae.

    Article  CAS  Google Scholar 

  45. 45

    McAndrew, R. P. et al. Structure of a three-domain sesquiterpene synthase: a prospective target for advanced biofuels production. Structure 19, 1876–1884 (2011).

    CAS  Article  Google Scholar 

  46. 46

    Withers, S. T. et al. Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl. Environ. Microbiol. 73, 6277–6283 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Bokinsky, G. et al. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc. Natl Acad. Sci. USA 108, 19949–19954 (2011). This paper presents the production of fatty-acid ethyl esters, butanol and the isoprenoid pinene in E. coli using ionic-liquid-treated switchgrass as the sole carbon source.

    CAS  Article  ADS  Google Scholar 

  48. 48

    Steen, E. J. et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463, 559–562 (2010). This study describes several pathways leading to the bioproduction of fatty acids, fatty alcohols and fatty-acid ethyl esters in E. coli in high titres.

    CAS  Article  ADS  Google Scholar 

  49. 49

    Lennen, R. M. et al. A process for microbial hydrocarbon synthesis: overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol. Bioeng. 106, 193–202 (2010).

    CAS  Article  Google Scholar 

  50. 50

    Liu, T., Vora, H. & Khosla, C. Quantitative analysis and engineering of fatty-acid biosynthesis in E. coli. Metab. Eng. 12, 378–386 (2010).

    CAS  Article  Google Scholar 

  51. 51

    Handke, P., Lynch, S. A. & Gill, R. T. Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals. Metab. Eng. 13, 28–37 (2011).

    CAS  Article  Google Scholar 

  52. 52

    Reiser, S. & Somerville, C. Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase. J. Bacteriol. 179, 2969–2975 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53

    Tan, X. et al. Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metab. Eng. 13, 169–176 (2011).

    CAS  Article  Google Scholar 

  54. 54

    Goh, E. B. et al. Engineering of bacterial methyl ketone synthesis for biofuels. Appl. Environ. Microbiol. 78, 70–80 (2011).

    Article  CAS  Google Scholar 

  55. 55

    Zhang, F., Carothers, J. M. & Keasling, J. D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nature Biotechnol. 30, 354–359 (2012). In this study, the authors developed a dynamic regulatory system that allows the host cell to sense the concentration of a key intermediate and automatically regulate a heterologous pathway.

    CAS  Article  Google Scholar 

  56. 56

    Kalscheuer, R., Stolting, T. & Steinbuchel, A. Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152, 2529–2536 (2006).

    CAS  Article  Google Scholar 

  57. 57

    Nawabi, P. et al. Engineering Escherichia coli for biodiesel production utilizing a bacterial fatty acid methyltransferase. Appl. Environ. Microbiol. 77, 8052–8061 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Schirmer, A. et al. Microbial biosynthesis of alkanes. Science 329, 559–562 (2010). This paper presents the discovery of two cyanobacterial genes responsible for the biosynthesis of alkanes.

    CAS  Article  ADS  Google Scholar 

  59. 59

    Rude, M. A. et al. Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species. Appl. Environ. Microbiol. 77, 1718–1727 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60

    Mendez-Perez, D., Begemann, M. B. & Pfleger, B. F. Modular synthase-encoding gene involved in alpha-olefin biosynthesis in Synechococcus sp. strain PCC 7002. Appl. Environ. Microbiol. 77, 4264–4267 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61

    Beller, H. R., Goh, E. B. & Keasling, J. D. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus. Appl. Environ. Microbiol. 76, 1212–1223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Sukovich, D. J. et al. Widespread head-to-head hydrocarbon biosynthesis in bacteria and role of OleA. Appl. Environ. Microbiol. 76, 3850–3862 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63

    Meades, G. Jr et al. A tale of two functions: enzymatic activity and translational repression by carboxyltransferase. Nucleic Acids Res. 38, 1217–1227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Davis, M. S. & Cronan, J. E. Jr. Inhibition of Escherichia coli acetyl coenzyme A carboxylase by acyl-acyl carrier protein. J. Bacteriol. 183, 1499–1503 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65

    Seregina, T. A. et al. Construction of a butyrate-producing E.coli strain without the use of heterologous genes. Appl. Biochem. Microbiol. 46, 745–754 (2010).

    CAS  Article  Google Scholar 

  66. 66

    Sun, J., Pharkya, P. & Burgard, A. Primary alcohol producing organisms. US patent 0,040,426 A1 (2012).

  67. 67

    Dellomonaco, C. et al. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 476, 355–359 (2011). This paper describes a unique pathway leading to the biosynthesis of alcohols and fatty-acid derivatives using reverse beta-oxidation cycles.

    CAS  Article  ADS  Google Scholar 

  68. 68

    Yuzawa, S. et al. Heterologous production of polyketides by modular type I polyketide synthases in Escherichia coli. Curr. Opin. Biotechnol. Preprint at http://dx.doi.org/10.1016/j.copbio.2011.12.029 (2012).

  69. 69

    Pfeifer, B. A. & Khosla, C. Biosynthesis of polyketides in heterologous hosts. Microbiol. Mol. Biol. Rev. 65, 106–118 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70

    Menzella, H. G. et al. Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nature Biotechnol. 23, 1171–1176 (2005).

    CAS  Article  Google Scholar 

  71. 71

    Jacobsen, J. R. et al. Precursor-directed biosynthesis of erythromycin analogs by an engineered polyketide synthase. Science 277, 367–369 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72

    Yuzawa, S., Kim, L., Katz, L., et al. Heterologous production ofpolyketides by modular type I polyketide synthases in Escherichia coli. Curr Opin Biotechnol. http://dx.doi.org/10.1016/j.copbio.2011.12.029

  73. 73

    Redding-Johanson, A. M. et al. Targeted proteomics for metabolic pathway optimization: application to terpene production. Metab. Eng. 13, 194–203 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74

    Asadollahi, M. A. et al. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab. Eng. 11, 328–334 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75

    Dunlop, M. J. et al. Engineering microbial biofuel tolerance and export using efflux pumps. Mol. Syst. Biol. 7, 487 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76

    Tyo, K. E., Ajikumar, P. K. & Stephanopoulos, G. Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nature Biotechnol. 27, 760–765 (2009).

    CAS  Article  Google Scholar 

  77. 77

    Jones, K. L., Kim, S. W. & Keasling, J. D. Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab. Eng. 2, 328–338 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78

    De Mey, M. et al. Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering. BMC Biotechnol. 7, 34 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Lee, T. S. et al. BglBrick vectors and datasheets: a synthetic biology platform for gene expression. J. Biol. Eng. 5, 12 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80

    d'Aubenton Carafa, Y., Brody, E. & Thermes, C. Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. J. Mol. Biol. 216, 835–858 (1990).

    CAS  Article  Google Scholar 

  81. 81

    Pfleger, B. F. et al. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nature Biotechnol. 24, 1027–1032 (2006).

    CAS  Article  Google Scholar 

  82. 82

    Smolke, C. D., Carrier, T. A. & Keasling, J. D. Coordinated, differential expression of two genes through directed mRNA cleavage and stabilization by secondary structures. Appl. Environ. Microbiol. 66, 5399–5405 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. 83

    Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotechnol. 27, 946–950 (2009).

    CAS  Article  Google Scholar 

  84. 84

    Griffith, K. L. & Grossman, A. D. Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP. Mol. Microbiol. 70, 1012–1025 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Holtz, W. J. & Keasling, J. D. Engineering static and dynamic control of synthetic pathways. Cell 140, 19–23 (2010).

    CAS  Article  Google Scholar 

  86. 86

    Michener, J. K. et al. Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways. Metab. Eng. 14, 212–222 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Primak, Y. A. et al. Characterization of a feedback-resistant mevalonate kinase from the archaeon Methanosarcina mazei. Appl. Environ. Microbiol. 77, 7772–7778 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88

    Dueber, J. E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nature Biotechnol. 27, 753–759 (2009). In this paper, a synthetic protein scaffold was used to spatially assemble metabolic-pathway enzymes to increase the flux through a heterologous metabolic pathway.

    CAS  Article  Google Scholar 

  89. 89

    Buelter, T. et al. Engineered microorganisms capable of producing target compounds under anaerobic conditions. US patent 0,058,532 A1 (2012).

  90. 90

    Donaldson, G. K. et al. Fermentative production of four carbon alcohols. US Patent 0,313,206 A1 (2007).

  91. 91

    Hong, K. K. & Nielsen, J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol. Life Sci. http://dx.doi.org/10.1007/s00018-012-0945-1 (2012).

  92. 92

    de Jong, B., Siewers, V. & Nielsen, J. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels. Curr. Opin. Biotechnol. http://dx.doi.org/10.1016/j.copbio.2011.11.021 (2011).

  93. 93

    Donaldson, G. K. et al. Fermentative production of four carbon alcohols. US patent 0,313,206 A1 (2011).

  94. 94

    Festel, G. et al. Fermentative production of isobutanol in yeast. US patent 0,053,235 A1 (2011).

  95. 95

    Knothe, G. Biodiesel and renewable diesel: a comparison. Prog. Energy Combust. Sci. 36, 364–373 (2010).

    CAS  Article  Google Scholar 

  96. 96

    Trimbur, D. et al. Production of oil in microorganisms. US patent 0,047,863 A1 (2011).

  97. 97

    Yu, X. et al. In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli. Proc. Natl Acad. Sci. USA 108, 18643–18648 (2011).

    CAS  Article  ADS  Google Scholar 

  98. 98

    Katz, L., Fortman, J. L. & Keasling, J. D. Producing biofuels using polyketide synthases. US patent CN102014623 (2011).

  99. 99

    Betancor, L. et al. Improved catalytic activity of a purified multienzyme from a modular polyketide synthase after coexpression with Streptomyces chaperonins in Escherichia coli. ChemBioChem 9, 2962–2966 (2008).

    CAS  Google Scholar 

  100. 100

    Tracewell, C. A. & Arnold, F. H. Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr. Opin. Chem. Biol. 13, 3–9 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P. P. P.-Y. and F. Z. contributed equally to this work. This work was supported in part by the Joint BioEnergy Institute, which is funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231, and by the Synthetic Biology Engineering Research Center, which is funded by National Science Foundation Award No. 0540879.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jay D. Keasling.

Ethics declarations

Competing interests

J.D.K. has a financial interest in Amyris, LS9 and Lygos. S.B.d. has a financial interest in LS9. The remaining authors declare no competing financial interest.

Additional information

Reprints and permissions information is available at www.nature.com/reprints

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peralta-Yahya, P., Zhang, F., del Cardayre, S. et al. Microbial engineering for the production of advanced biofuels. Nature 488, 320–328 (2012). https://doi.org/10.1038/nature11478

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.