Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Opportunities and challenges for a sustainable energy future


Access to clean, affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty–first century must also be sustainable. Solar and water–based energy generation, and engineering of microbes to produce biofuels are a few examples of the alternatives. This Perspective puts these opportunities into a larger context by relating them to a number of aspects in the transportation and electricity generation sectors. It also provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Statistical review of world energy.
Figure 2: Vehicle energy losses.
Figure 3: Methods of producing alternative fuels from various feedstocks to products.
Figure 4: Alternative fuel costs.
Figure 5: Projections from the International Energy Agency for the generation of electricty until 2035.
Figure 6: Projections by the US Energy Information Administration made in 2010 of the 2016 average cost and range of the levellized cost of electricity from various sources.
Figure 7: Levellized cost of energy for quarter three, 2012.
Figure 8: Rate constant of current absorbents or adsorbents is about linearly proportional to the reaction enthalpy.
Figure 9: History of the relative mix of the main source of energy used in the United States.


  1. Lee, R. The outlook for population growth. Science 333, 569–573 (2011).

    CAS  ADS  Article  Google Scholar 

  2. International Energy Agency in World Energy Outlook 2011, 546–547 (International Energy Agency, 2011).

  3. Committee on America's Energy Future, National Academy of Sciences, National Academy of Engineering and National Research Council. America's Energy Future: Technology and Transformation (National Academies Press, 2009).

  4. US Department of Energy. Report on the First Quadrennial Technology Review. (US DOE, 2011).

  5. BP. BP Statistical Review of World Energy. (BP, 2012).

  6. Maugeri, L. Oil: The Next Revolution. Discussion Paper 2012–10. (Belfer Center for Science and International Affairs, Harvard Kennedy School, 2012).

    Google Scholar 

  7. Inderwildi, O. & King, D. (eds). Energy, Transport, & the Environment, Addressing the Sustainable Mobility Paradigm. (Springer, 2012).

    Google Scholar 

  8. US Department of Energy. Quadrennial Technology Review report, vol. II Technology Assessments (US Department of Energy, 2011).

  9. Gibbs, J., Pesaran, A. A., Sklad, P. S. & Marlino, L. D. in Fundamentals of Materials for Energy and Environmental Sustainability (eds Ginley, D. S. & Cahen D.) Ch. 31, 426–444 (Cambridge Univ. Press, 2012).

    Google Scholar 

  10. Powers, W. F., Automotive materials in the 21st century. Adv. Mater. Process. 157, 38–41 (2000).

    ADS  Google Scholar 

  11. Cuddy, M. R. & Wipke, K. B. Analysis of Fuel Economy Benefit of Drivetrain Hybridization. (National Renewable Energy Laboratory, 1997).

    Book  Google Scholar 

  12. Holmberg, K., Anderssona, P. & Erdemirb, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234 (2012).

    Article  Google Scholar 

  13. Schafer, A., Heywood, J. B. & Weiss, M. A. Future fuel cell and internal combustion engine automobile technologies: a 25-year life cycle and fleet impact assessment. Energy 31, 2064–2087 (2006).

    Article  Google Scholar 

  14. Manley, D. K., McIlroy, A. & Taatjes, C. A. Research needs for future internal combustion engines. Physics Today 61, 47–52 (2008).

    Article  Google Scholar 

  15. Yang, J. & Caillat, T. Thermoelectric materials for space and automotive power generation. MRS Bull. 31, 224–229 (2006).

    CAS  Article  Google Scholar 

  16. Scrosati, B. & Grache, J. Lithium batteries: status, prospects and future. J. Power Sources 195, 2419–2430 (2010).

    CAS  ADS  Article  Google Scholar 

  17. McCone, A. Electric Vehicle Battery Prices Down 14% Year on Year (Bloomberg New Energy Finance, 2012).

    Google Scholar 

  18. Chan, C. C. The state of the art of electric, hybrid, and fuel cell vehicles. Proc. IEEE 95, 704–718 (2007).

    Article  Google Scholar 

  19. Lukic, S. M., Cao, J., Bansal, R. C., Rodriguez, F. & Emadi, A. Energy storage systems for automotive applications. IEEE Trans. Ind. Electron. 55, 2258–2267 (2008).

    Article  Google Scholar 

  20. Spendelow, J. & Papageorgopoulos, D. Progress in PEMFC MEA component R&D at the DOE fuel cell technologies program. Fuel Cells 11, 775–786 (2011).

    CAS  Article  Google Scholar 

  21. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).

    CAS  ADS  Article  Google Scholar 

  22. Yang, J., Sudik, A., Wolverton, C. & Siegel, D. J. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 39, 656–675 (2010).

    CAS  Article  Google Scholar 

  23. Paster, M. D. et al. Hydrogen storage technology options for fuel cell vehicles: well-to-wheel costs, energy efficiencies, and greenhouse gas emissions. Int. J. Hydrogen Energy 36, 14534–14551 (2011).

    CAS  Article  Google Scholar 

  24. David, E. An overview of advanced materials for hydrogen storage. J. Mater. Process. Technol. 162–163, 169–177 (2005).

    Article  Google Scholar 

  25. Murray, L. J., Dincă, M. & Long, J. R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009).

    CAS  Article  Google Scholar 

  26. Abbas, H. F. & Wan Daud, W. M. A. Hydrogen production by methane decomposition: A review. Int. J. Hydrogen Energy 35, 1160–1190 (2010).

    CAS  Article  Google Scholar 

  27. Krupnick, A. J. Will Natural Gas Vehicles be in Our Future. (Resources for the Future, 2011).

    Google Scholar 

  28. NACS. Key Facts and Figures. (NACS, 2011).

  29. America's Energy Future Panel. Liquid Transportation Fuels. (National Academies Press, 2009).

  30. Environmental Protection Agency. Renewable Fuel Standard Program (RFS2): Final Rulemaking (US Environmental Protection Agency, 2010).

  31. United Nations Environment Programme. Towards Sustainable Production of and use of resources: Assessing Biofuels (United Nations Environment Programme, 2009).

  32. Stratton, R. W., Wong, H. M. & Hileman, J. I. Quantifying variability in life cycle greenhouse gas inventories of alternative middle distillate transportation fuels. Environ. Sci. Technol. 45, 4637–4644 (2011).

    CAS  ADS  Article  Google Scholar 

  33. Peralta-Yahya, P. P., Zhang, F., del Cardayre, S. B. & Keasling, J. D. Progress in the microbial production of advanced biofuels: from feedstocks to fuels. Nature 488, 320–328 (2012).

    CAS  ADS  Article  Google Scholar 

  34. Worldwatch Institute. Biofuels for Transport (Routledge, 2007).

  35. Georgianna, D. R. & Mayfield, S. P. Exploiting diversity and synthetic biology for the production algae biofuels, Nature 488, 329–335 (2012).

    CAS  ADS  Article  Google Scholar 

  36. Zhu, X-, G., Long, S. P. & Ort, D. R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotechnol. 19, 153–159 (2008).

    CAS  Article  Google Scholar 

  37. Conrado, R. J. et al. in Electrofuels: A new paradigm for renewable fuels. Advanced Biofuels and Bioproducts (Lee, J. ed.) (Springer, 2012).

    Google Scholar 

  38. International Energy Agency. World Energy Outlook 2011 179,186 (International Energy Agency, 2011).

  39. International Energy Agency. World Energy Outlook 2011, 180 (International Energy Agency, 2011).

  40. US Energy Information Administration. Annual Energy Outlook 2011 Levelized Cost Supplement (US Energy Information Administration, 2011)

  41. Bloomberg New Energy Finance. Levelised Cost of Energy Update, Q3 2012 (Bloomberg New Energy Finance, 2012).

  42. Wiser, R., Lantz E., Bolinger, M. & Hand, M. Recent Developments in the Levelized Cost of Energy from U.S. Wind Power Projects. (US Department of Energy, 2012).

    Google Scholar 

  43. Galen Barbose, G. Darghouth, N., Wiser, R. & Seel, J. Tracking the Sun: An Historical Summary of the Installed Cost of Photovoltaics in the United States from 1998 to 2010 (Lawrence Berkeley National Laboratory report, 2011).

    Google Scholar 

  44. Solar Energy Industries Association. US Solar Market Insight Report Q1 2012 (Solar Energy Industries Association, 2012).

  45. Hand, M. M. et al. Renewable Electricity Futures Study (National Renewable Energy Laboratory, 2012).

    Google Scholar 

  46. US Department of Energy. SunShot Vision Study (US Department of Energy, 2012).

  47. Baziliana, M. et al. Re-considering the Economics of Photovoltiac Power (Bloomberg New Energy Finance, 2012).

    Google Scholar 

  48. Swanson, R. M. Plenary talk at the DOE SunShot Grand Challenge: Summit and Technology Forum on June 14, 2012 (US Department of Energy, 2012).

    Google Scholar 

  49. US Department of Energy. SunShot Initiative (US Department of Energy, 2012).

  50. Swanson, R. M. Proc. 31st IEEE Photovoltaic Specialists Conf. 889–894 (2005).

  51. Graetzel M. Jannsen, R. A., Mitzi, D. B. & Sargent, E. H. Materials interface engineering for solution-processed photovoltaics, Nature 488, 304–312 (2012).

    CAS  ADS  Article  Google Scholar 

  52. Stoddard, N., Wu B., Maisano, L., Russell, Clark, R. & Fernandez, J. M. The Leading Edge of Silicon Casting Technology and BP Solar's Mono2 Wafers, in 18th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes. pp. 7–14. (National Renewable Energy Laboratory, 2008).

    Google Scholar 

  53. Mavrokefalos, A., Han, S. E., Yerci, S., Branham, M. S. & Chen, G. Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. Nano Lett. 12, 2792–2796 (2012).

    CAS  ADS  Article  Google Scholar 

  54. Solexel. Solexel unveils ultra-thin, high-performance silicon solar cell at Intersolar. (Solexel, 2012).

  55. Rao, R. A. et al. Proc. 37th IEEE Photovoltaic Specialists Conf. 1504–1507 (2011).

  56. Sachs, E. M., Wallace R. L., Hantsoo, E. T., Lorenz, A. M., Hudelson S.G.D. & Jonczyk, R. Methods for efficiently making thin semiconductor bodies from molten material for solar cells and the like, US Patent Application 20120067273 (2012).

  57. Garland J. W., Biegala, T., Carmody, M., Gilmore, C. & Sivananthan, S. Next-generation multijunction solar cells: The promise of II-VI materials. J. Appl. Phys. 109, 102423 (2011).

    ADS  Article  Google Scholar 

  58. Miller, O. D., Yablonovitch, E. & Kurtz, S. R. Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit. IEEE J. Photovolt. 2, 303–311 (2012).

    Article  Google Scholar 

  59. Angel, R. & Olbert, B. H. Method of manufacturing large dish reflectors for a solar concentrator apparatus. US Patent Application 20120125400 (2011).

  60. Gur, I., Sawyer, K. & Prasher, R. Searching for a better thermal battery. Science 335, 1454–1455 (2012).

    ADS  Article  Google Scholar 

  61. Advanced Research Projects Agency-Energy. ARPA-E Efficient Power Conversion Factsheet. (Advanced Research Projects Agency-Energy, 2010).

  62. Bolinger, M. & Wiser, R. Understanding wind turbine price trends in the U.S. over the past decade. Energy Pol. 42, 628–641 (2012).

    Article  Google Scholar 

  63. US Department of Energy. Critical Materials Strategy. (US Department of Energy, 2010)

  64. National Research Council. Minerals, Critical Minerals, and the U.S. Economy (National Academies Press, 2008).

  65. Komuro, M., Kozono Y., Hanazono, M. & Yutaka, S. Epitaxial growth and magnetic properties of Fe16N2 films with high saturation magnetic flux density. J. Appl. Phys. 67, 5126–5130 (1990).

    CAS  ADS  Article  Google Scholar 

  66. Nian, J., Lawrence F. A., Edgar L. C., & Wang, J.-P. N-site ordering effect on partially ordered Fe16N2 . Appl. Phys. Lett. 98, 092506 (2011).

    Article  Google Scholar 

  67. Bader, S. J. Opportunities in nanomagnetism. Rev. Mod. Phys. 78, 1–15 (2006).

    CAS  ADS  Article  Google Scholar 

  68. American Physical Society. Direct air capture of CO2 with chemicals: a Technology Assessment for the APS Panel on Public Affairs. (American Physical Society, 2011).

  69. Turner, N. J. Directed evolution drives the next generation of biocatalysts. Nature Chem. Biol. 5, 567–573 (2009).

    CAS  Article  Google Scholar 

  70. Pruess, K. Enhanced geothermal systems (EGS) using CO2 as working fluid — a novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 35, 351–367 (2006).

    CAS  Article  Google Scholar 

  71. International Energy Agency. Technology Roadmap — Nuclear Energy (International Energy Agency, 2010).

  72. Ruhl, C. Energy in 2011 — disruption and continuity BP Statistical Review of World Energy (BP, 2012).

    Google Scholar 

  73. Nuclear Energy Institute. Costs: Fuel, Operation and Waste Disposal (National Energy Institute, 2012).

  74. Nuclear Energy Institute. The Cost of New Generating Capacity in Perspective (Nuclear Energy Institute, 2012).

  75. Massachusetts Institute of Technology. Update of the MIT 2003 Future of Nuclear Power Study (Massachusetts Institute of Technology, 2009).

  76. Chu, S. America's new nuclear option. Wall Street J. (March 23, 2010).

  77. US Department of Energy. Small Modular Reactor Fact Sheet (US Department of Energy, 2012).

  78. US Department of Energy. Consortium for Advanced Simulation of LWRs Project Summary. (US Department of Energy).

  79. Advanced Research Projects Agency-Energy. Grid-scale renewable energy storage factsheet. (Advanced Research Projects Agency-Energy, 2010).

  80. Energy Information Administration. Annual Energy Review 2010. Report No. DOE/EIA-0384(2010) (Energy Information Administration, 2010).

  81. Munich Re. Topics Geo. (Munich Re, 2012).

  82. Intergovernmental Panel on Climate Change. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. (Cambridge Univ. Press, 2012).

Download references


The authors wish to acknowledge T.J. Augustine, P. Davis, H. Gruenspecht, M. Le, P. Lyons, R. Ramamoorthy, D. Sandalow, S. Satyapal and E. Toone for suggestions.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Steven Chu or Arun Majumdar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chu, S., Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

Download citation

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing