A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies

Article metrics

Abstract

In the cores of some clusters of galaxies the hot intracluster plasma is dense enough that it should cool radiatively in the cluster’s lifetime1,2,3, leading to continuous ‘cooling flows’ of gas sinking towards the cluster centre, yet no such cooling flow has been observed. The low observed star-formation rates4,5 and cool gas masses6 for these ‘cool-core’ clusters suggest that much of the cooling must be offset by feedback to prevent the formation of a runaway cooling flow7,8,9,10. Here we report X-ray, optical and infrared observations of the galaxy cluster SPT-CLJ2344-4243 (ref. 11) at redshift z = 0.596. These observations reveal an exceptionally luminous (8.2 × 1045 erg s−1) galaxy cluster that hosts an extremely strong cooling flow (around 3,820 solar masses a year). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (formation of around 740 solar masses a year), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool-core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star-formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form through accretion of the intracluster medium, rather than (as is currently thought) assembling entirely via mergers.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: False-colour images of the galaxies and intracluster plasma in the galaxy cluster SPT-CLJ2344-4243.
Figure 2: Optical and near-infrared emission-line spectra of the central galaxy in SPT-CLJ2344-4243.
Figure 3: Spectral energy distribution of the central galaxy in SPT-CLJ2344-4243 from the far-ultraviolet to the far-infrared.

References

  1. 1

    Lea, S. M., Silk, J., Kellogg, E. & Murray, S. Thermal-Bremsstrahlung interpretation of cluster X-ray sources. Astrophys. J. 184, L105 (1973)

  2. 2

    Cowie, L. L. & Binney, J. Radiative regulation of gas flow within clusters of galaxies—a model for cluster X-ray sources. Astrophys. J. 215, 723–732 (1977)

  3. 3

    Fabian, A. C. & Nulsen, P. E. J. Subsonic accretion of cooling gas in clusters of galaxies. Mon. Not. R. Astron. Soc. 180, 479–484 (1977)

  4. 4

    O'Dea, C. P. et al. An infrared survey of brightest cluster galaxies. II. Why are some brightest cluster galaxies forming stars? Astrophys. J. 681, 1035–1045 (2008)

  5. 5

    McDonald, M., Veilleux, S., Rupke, D. S. N., Mushotzky, R. & Reynolds, C. Star formation efficiency in the cool cores of galaxy clusters. Astrophys. J. 734, 95 (2011)

  6. 6

    Edge, A. C. The detection of molecular gas in the central galaxies of cooling flow clusters. Mon. Not. R. Astron. Soc. 328, 762–782 (2001)

  7. 7

    McNamara, B. R. & Nulsen, P. E. J. Heating hot atmospheres with active galactic nuclei. Annu. Rev. Astron. Astrophys. 45, 117–175 (2007)

  8. 8

    Fabian, A. C. Observational evidence of AGN feedback. Annu. Rev. Astron. Astrophys. (in the press); preprint at http://arxiv.org/abs/1204.4114 (2012)

  9. 9

    Mathews, W. G. Stopping cooling flows with cosmic-ray feedback. Astrophys. J. Lett. 695, L49–L52 (2009)

  10. 10

    Gómez, P. L., Loken, C., Roettiger, K. & Burns, J. O. Do cooling flows survive cluster mergers? Astrophys. J. 569, 122–133 (2002)

  11. 11

    Williamson, R. et al. A Sunyaev-Zel'dovich-selected sample of the most massive galaxy clusters in the 2500 deg2 South Pole Telescope Survey. Astrophys. J. 738, 139 (2011)

  12. 12

    Carlstrom, J. E. et al. The 10 meter South Pole Telescope. Proc. Astron. Soc. Pacif. 123, 568–581 (2011)

  13. 13

    Vikhlinin, A. et al. Chandra Cluster Cosmology Project. II. Samples and X-ray data reduction. Astrophys. J. 692, 1033–1059 (2009)

  14. 14

    Menanteau, F. et al. The Atacama Cosmology Telescope: ACT-CL J0102–4915 “El Gordo”, a massive merging cluster at redshift 0.87. Astrophys. J. 748, 7 (2011)

  15. 15

    Foley, R. J. et al. Discovery and cosmological implications of SPT-CL J2106–5844, the most massive known cluster at z>1. Astrophys. J. 731, 86 (2011)

  16. 16

    Fabian, A. C. et al. Chandra imaging of the complex X-ray core of the Perseus cluster. Mon. Not. R. Astron. Soc. 318, L65–L68 (2000)

  17. 17

    Allen, S. W., Fabian, A. C. & Kneib, J. P. A combined X-ray and gravitational lensing study of the massive cooling-flow cluster PKS 0745–191. Mon. Not. R. Astron. Soc. 279, 615–635 (1996)

  18. 18

    Vikhlinin, A. et al. in Heating versus Cooling in Galaxies and Clusters of Galaxies (eds Böhringer, H., Pratt, G. W., Finoguenov, A. & Schuecker, P. ) 48 (2007); preprint at http://arxiv.org/abs/astro-ph/0611438.

  19. 19

    Santos, J. S. et al. Searching for cool core clusters at high redshift. Astron. Astrophys. 483, 35–47 (2008)

  20. 20

    McDonald, M. Optical line emission in brightest cluster galaxies at 0 < z 0.6: evidence for a lack of strong cool cores 3.5 Gyr ago? Astrophys. J. Lett. 742, L35 (2011)

  21. 21

    Hu, E. M., Cowie, L. L. & Wang, Z. Long-slit spectroscopy of gas in the cores of X-ray luminous clusters. Astrophys. J. 59 (Suppl.). 447–498 (1985)

  22. 22

    Heckman, T. M., Baum, S. A., van Breugel, W. J. M. & McCarthy, P. Dynamical, physical, and chemical properties of emission-line nebulae in cooling flows. Astrophys. J. 338, 48–77 (1989)

  23. 23

    McDonald, M., Veilleux, S., Rupke, D. S. N. & Mushotzky, R. On the origin of the extended Hα filaments in cooling flow clusters. Astrophys. J. 721, 1262–1283 (2010)

  24. 24

    Conselice, C. J., Gallagher, J. S., III & Wyse, R. F. G. On the nature of the NGC 1275 system. Astron. J. 122, 2281–2300 (2001)

  25. 25

    Sparks, W. B., Biretta, J. A. & Macchetto, F. The jet of M87 at tenth-arcsecond resolution: optical, ultraviolet, and radio observations. Astrophys. J. 473, 254 (1996)

  26. 26

    McDonald, M., Veilleux, S. & Rupke, D. S. N. Optical spectroscopy of Hα filaments in cool core clusters: kinematics, reddening, and sources of ionization. Astrophys. J. 746, 153 (2012)

  27. 27

    McNamara, B. R. et al. The starburst in the Abell 1835 Cluster Central Galaxy: a case study of galaxy formation regulated by an outburst from a supermassive black hole. Astrophys. J. 648, 164–175 (2006)

  28. 28

    Allen, S. W. The properties of cooling flows in X-ray luminous clusters of galaxies. Mon. Not. R. Astron. Soc. 315, 269–295 (2000)

  29. 29

    Gitti, M. & Schindler, S. XMM-Newton observation of the most X-ray-luminous galaxy cluster RX J1347.5–1145. Astron. Astrophys. 427, L9–L12 (2004)

  30. 30

    Polletta, M. et al. Spectral energy distributions of hard X-ray selected active galactic nuclei in the XMM-Newton Medium Deep Survey. Astrophys. J. 663, 81–102 (2007)

Download references

Acknowledgements

M.McD. was supported at MIT by NASA through the Chandra X-ray Observatory. The South Pole Telescope is supported by the National Science Foundation, with partial support provided by the Kavli Foundation, and the Moore Foundation. Support for X-ray analysis was provided by NASA. Work at McGill University is supported by NSERC, the CRC programme, and CIfAR, and at Harvard University by the NSF. S.V. acknowledges a Senior NPP Award held at the NASA Goddard Space Flight Center. R.K. acknowledges a NASA Hubble Fellowship, B.A.B. acknowledges a KICP Fellowship, M.A.D. acknowledges an Alfred P. Sloan Research Fellowship, and O.Z. acknowledges a BCCP fellowship.

Author information

M.McD. reduced the X-ray and optical long slit spectroscopic data, performed the main analysis, and wrote the paper, with significant assistance from B.A.B., R.J.F. and S.V., and comments from all other authors. M.B. and J.R. reduced multi-slit observations of SPT-CLJ2344-4243 and performed the velocity dispersion analysis. P.S. and R.S. obtained the infrared spectroscopy, and P.S. reduced these data. All other authors (listed alphabetically) have contributed as part of the South Pole Telescope collaboration, by either their involvement with the initial cluster discovery with the South Pole Telescope and/or multi-wavelength follow-up.

Correspondence to M. McDonald.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-4, Supplementary Figures 1-6, Supplementary Tables 1-2 and additional references. (PDF 306 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.