Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lrp4 is a retrograde signal for presynaptic differentiation at neuromuscular synapses


Motor axons receive retrograde signals from skeletal muscle that are essential for the differentiation and stabilization of motor nerve terminals1. Identification of these retrograde signals has proved elusive, but their production by muscle depends on the receptor tyrosine kinase, MuSK (muscle, skeletal receptor tyrosine-protein kinase), and Lrp4 (low-density lipoprotein receptor (LDLR)-related protein 4), an LDLR family member that forms a complex with MuSK, binds neural agrin and stimulates MuSK kinase activity2,3,4,5. Here we show that Lrp4 also functions as a direct muscle-derived retrograde signal for early steps in presynaptic differentiation. We demonstrate that Lrp4 is necessary, independent of MuSK activation, for presynaptic differentiation in vivo, and we show that Lrp4 binds to motor axons and induces clustering of synaptic-vesicle and active-zone proteins. Thus, Lrp4 acts bidirectionally and coordinates synapse formation by binding agrin, activating MuSK and stimulating postsynaptic differentiation, and functioning in turn as a muscle-derived retrograde signal that is necessary and sufficient for presynaptic differentiation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Lrp4-expressing non-muscle cells induce clustering of synapsin in motor axons.
Figure 2: Lrp4, attached to polystyrene beads, induces presynaptic differentiation in motor neurons.
Figure 3: Lrp4 binds to motor axons.
Figure 4: Lrp4 is essential for presynaptic differentiation independent of MuSK activation.


  1. 1

    Sanes, J. R. & Lichtman, J. W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nature Rev. Neurosci. 2, 791–805 (2001)

    CAS  Article  Google Scholar 

  2. 2

    DeChiara, T. M. et al. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85, 501–512 (1996)

    CAS  Article  Google Scholar 

  3. 3

    Weatherbee, S. D., Anderson, K. V. & Niswander, L. A. LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development 133, 4993–5000 (2006)

    CAS  Article  Google Scholar 

  4. 4

    Kim, N. et al. Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell 135, 334–342 (2008)

    CAS  Article  Google Scholar 

  5. 5

    Zhang, B. et al. LRP4 serves as a coreceptor of agrin. Neuron 60, 285–297 (2008)

    CAS  Article  Google Scholar 

  6. 6

    Arber, S., Burden, S. J. & Harris, A. J. Patterning of skeletal muscle. Curr. Opin. Neurobiol. 12, 100–103 (2002)

    CAS  Article  Google Scholar 

  7. 7

    Yang, X. et al. Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30, 399–410 (2001)

    CAS  Article  Google Scholar 

  8. 8

    Yang, X., Li, W., Prescott, E. D., Burden, S. J. & Wang, J. C. DNA topoisomerase IIbeta and neural development. Science 287, 131–134 (2000)

    CAS  Article  ADS  Google Scholar 

  9. 9

    Lin, W. et al. Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410, 1057–1064 (2001)

    CAS  Article  ADS  Google Scholar 

  10. 10

    Panzer, J. A. S. o. n. g. Y. & Balice-Gordon, R. J. In vivo imaging of preferential motor axon outgrowth to and synaptogenesis at prepatterned acetylcholine receptor clusters in embryonic zebrafish skeletal muscle. J. Neurosci. 26, 934–947 (2006)

    CAS  Article  Google Scholar 

  11. 11

    Flanagan-Steet, H., Fox, M. A., Meyer, D. & Sanes, J. R. Neuromuscular synapses can form in vivo by incorporation of initially aneural postsynaptic specializations. Development 132, 4471–4481 (2005)

    CAS  Article  Google Scholar 

  12. 12

    Burden, S. J. SnapShot: neuromuscular junction. Cell 144, 826.e1 (2011)

    Article  Google Scholar 

  13. 13

    Kummer, T. T., Misgeld, T. & Sanes, J. R. Assembly of the postsynaptic membrane at the neuromuscular junction: paradigm lost. Curr. Opin. Neurobiol. 16, 74–82 (2006)

    CAS  Article  Google Scholar 

  14. 14

    Zhang, W., Coldefy, A. S., Hubbard, S. R. & Burden, S. J. Agrin binds to the N-terminal region of Lrp4 and stimulates association between Lrp4 and the first Ig-like domain in MuSK. J. Biol. Chem. (2011)

  15. 15

    Gautam, M. et al. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85, 525–535 (1996)

    CAS  Article  Google Scholar 

  16. 16

    Lin, W. et al. Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism. Neuron 46, 569–579 (2005)

    CAS  Article  Google Scholar 

  17. 17

    Misgeld, T., Kummer, T. T., Lichtman, J. W. & Sanes, J. R. Agrin promotes synaptic differentiation by counteracting an inhibitory effect of neurotransmitter. Proc. Natl Acad. Sci. USA 102, 11088–11093 (2005)

    CAS  Article  ADS  Google Scholar 

  18. 18

    Kim, N. & Burden, S. J. MuSK controls where motor axons grow and form synapses. Nature Neurosci. 11, 19–27 (2008)

    CAS  Article  Google Scholar 

  19. 19

    Gomez, A. M. &. B. u. r. d. e. n. S. J. The extracellular region of Lrp4 is sufficient to mediate neuromuscular synapse formation. Dev. Dynam. 240, 2626–2633 (2011)

    CAS  Article  Google Scholar 

  20. 20

    Engel, A. G., Ohno, K. & Sine, S. M. Sleuthing molecular targets for neurological diseases at the neuromuscular junction. Nature Rev. Neurosci. 4, 339–352 (2003)

    CAS  Article  Google Scholar 

  21. 21

    Higuchi, O., Hamuro, J., Motomura, M. & Yamanashi, Y. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann. Neurol. 69, 418–422 (2011)

    CAS  Article  Google Scholar 

  22. 22

    Drescher, U. The Eph family in the patterning of neural development. Curr. Biol. 7, R799–R807 (1997)

    CAS  Article  Google Scholar 

  23. 23

    Bao, J., Wolpowitz, D., Role, L. W. & Talmage, D. A. Back signaling by the Nrg-1 intracellular domain. J. Cell Biol. 161, 1133–1141 (2003)

    CAS  Article  Google Scholar 

  24. 24

    Fox, M. A. et al. Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell 129, 179–193 (2007)

    CAS  Article  Google Scholar 

  25. 25

    Higuchi, O., Hamuro, J., Motomura, M. & Yamanashi, Y. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann. Neurol. 69, 418–422 (2011)

    CAS  Article  Google Scholar 

  26. 26

    Pun, S., Santos, A. F., Saxena, S., Xu, L. & Caroni, P. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nature Neurosci. 9, 408–419 (2006)

    CAS  Article  Google Scholar 

  27. 27

    Valdez, G. et al. Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc. Natl Acad. Sci. USA 107, 14863–14868 (2010)

    CAS  Article  ADS  Google Scholar 

  28. 28

    Hata, K., Polo-Parada, L. & Landmesser, L. T. Selective targeting of different neural cell adhesion molecule isoforms during motoneuron myotube synapse formation in culture and the switch from an immature to mature form of synaptic vesicle cycling. J. Neurosci. 27, 14481–14493 (2007)

    CAS  Article  Google Scholar 

  29. 29

    Umemori, H., Linhoff, M. W., Ornitz, D. M. & Sanes, J. R. FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell 118, 257–270 (2004)

    CAS  Article  Google Scholar 

  30. 30

    Umemori, H. & Sanes, J. R. Signal regulatory proteins (SIRPS) are secreted presynaptic organizing molecules. J. Biol. Chem. 283, 34053–34061 (2008)

    CAS  Article  Google Scholar 

Download references


We thank L. Landmesser and K. Hata for helping us to establish a motor-neuron and muscle co-culture system, W. Zhang for constructs encoding Fc- and AP-tagged forms of Lrp4, T. Jessell and J. Dasen for HB9::GFP mice, J. Sanes for agrin-mutant mice, K. Anderson and L. Niswander for Lrp4-mutant mice, and D. Littman and R. Lehmann for comments on the manuscript. We are grateful to P. Lopez and M. J. Sunshine and personnel in the transgenic mouse core for their assistance. The flow cytometry and transgenic mouse cores are supported by a New York University Cancer Institute Center Support Grant (National Institutes of Health (NIH)/National Cancer Institute (NCI) 5 P30CA16087-31). This work was supported with funds from the National Institutes of Health (NS36193 to S.J.B.), the Skirball Institute and postdoctoral training support to N.Y. from New York State Stem Cell Science (NYSTEM).

Author information




N.Y. designed and carried out all of the experiments in Figs 1, 2 and 3. N.K. designed and carried out the experiments in Fig. 4. S.J.B. helped to design and interpret experiments. All authors wrote and edited the manuscript.

Corresponding author

Correspondence to Steven J. Burden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-9. (PDF 7501 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yumoto, N., Kim, N. & Burden, S. Lrp4 is a retrograde signal for presynaptic differentiation at neuromuscular synapses. Nature 489, 438–442 (2012).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing