Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis

Abstract

Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder resulting from motor neuron death. Approximately 10% of cases are familial (FALS), typically with a dominant inheritance mode. Despite numerous advances in recent years1,2,3,4,5,6,7,8,9, nearly 50% of FALS cases have unknown genetic aetiology. Here we show that mutations within the profilin 1 (PFN1) gene can cause FALS. PFN1 is crucial for the conversion of monomeric (G)-actin to filamentous (F)-actin. Exome sequencing of two large ALS families showed different mutations within the PFN1 gene. Further sequence analysis identified 4 mutations in 7 out of 274 FALS cases. Cells expressing PFN1 mutants contain ubiquitinated, insoluble aggregates that in many cases contain the ALS-associated protein TDP-43. PFN1 mutants also display decreased bound actin levels and can inhibit axon outgrowth. Furthermore, primary motor neurons expressing mutant PFN1 display smaller growth cones with a reduced F/G-actin ratio. These observations further document that cytoskeletal pathway alterations contribute to ALS pathogenesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Exome sequencing identifies PFN1 gene mutations in familial ALS.
Figure 2: Mutant PFN1 produces ubiquitinated insoluble aggregates.
Figure 3: Mutant PFN1 inhibits axon outgrowth.
Figure 4: Mutant PFN1 reduces growth cone size and F/G-actin expression.

References

  1. 1

    Kabashi, E. et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genet. 40, 572–574 (2008)

    CAS  Article  Google Scholar 

  2. 2

    Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Kwiatkowski, T. J., Jr et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208 (2009)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Vance, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211 (2009)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Johnson, J. O. et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68, 857–864 (2010)

    CAS  Article  Google Scholar 

  6. 6

    DeJesus-Hernandez, M. et al. Expanded GGGGCC exanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011)

    CAS  Article  Google Scholar 

  7. 7

    Deng, H. X. et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477, 211–215 (2011)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011)

    CAS  Article  Google Scholar 

  9. 9

    Gijselinck, I. et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol. 11, 54–65 (2012)

    CAS  Article  Google Scholar 

  10. 10

    Mockrin, S. C. & Korn, E. D. Acanthamoeba profilin interacts with G-actin to increase the rate of exchange of actin-bound adenosine 5′-triphosphate. Biochemistry 19, 5359–5362 (1980)

    CAS  Article  Google Scholar 

  11. 11

    Landers, J. E. et al. Reduced expression of the Kinesin-Associated Protein 3 (KIFAP3) gene increases survival in sporadic amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 106, 9004–9009 (2009)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Suetsugu, S. et al. The essential role of profilin in the assembly of actin for microspike formation. EMBO J. 17, 6516–6526 (1998)

    CAS  Article  Google Scholar 

  13. 13

    Giesemann, T. et al. A role for polyproline motifs in the spinal muscular atrophy protein SMN. J. Biol. Chem. 274, 37908–37914 (1999)

    CAS  Article  Google Scholar 

  14. 14

    Schutt, C. E. et al. The structure of crystalline profilin–β-actin. Nature 365, 810–816 (1993)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Wills, Z. et al. Profilin and the Abl tyrosine kinase are required for motor axon outgrowth in the Drosophila embryo. Neuron 22, 291–299 (1999)

    CAS  Article  Google Scholar 

  16. 16

    Witke, W. et al. In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO J. 17, 967–976 (1998)

    CAS  Article  Google Scholar 

  17. 17

    Braun, A. et al. Genomic organization of profilin-III and evidence for a transcript expressed exclusively in testis. Gene 283, 219–225 (2002)

    CAS  Article  Google Scholar 

  18. 18

    Tilney, L. G. et al. Actin from Thyone sperm assembles on only one end of an actin filament: a behavior regulated by profilin. J. Cell Biol. 97, 112–124 (1983)

    CAS  Article  Google Scholar 

  19. 19

    Takeuchi, H. et al. Hsp70 and Hsp40 improve neurite outgrowth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1. Brain Res. 949, 11–22 (2002)

    CAS  Article  Google Scholar 

  20. 20

    Duan, W. et al. MG132 enhances neurite outgrowth in neurons overexpressing mutant TAR DNA-binding protein-43 via increase of HO-1. Brain Res. 1397, 1–9 (2011)

    CAS  Article  Google Scholar 

  21. 21

    Fujii, R. et al. The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology. Curr. Biol. 15, 587–593 (2005)

    CAS  Article  Google Scholar 

  22. 22

    Witke, W. The role of profilin complexes in cell motility and other cellular processes. Trends Cell Biol. 14, 461–469 (2004)

    CAS  Article  Google Scholar 

  23. 23

    Shao, J. et al. Phosphorylation of profilin by ROCK1 regulates polyglutamine aggregation. Mol. Cell. Biol. 28, 5196–5208 (2008)

    CAS  Article  Google Scholar 

  24. 24

    Al-Chalabi, A. et al. Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum. Mol. Genet. 8, 157–164 (1999)

    CAS  Article  Google Scholar 

  25. 25

    Gros-Louis, F. et al. A frameshift deletion in peripherin gene associated with amyotrophic lateral sclerosis. J. Biol. Chem. 279, 45951–45956 (2004)

    CAS  Article  Google Scholar 

  26. 26

    Puls, I. et al. Mutant dynactin in motor neuron disease. Nature Genet. 33, 455–456 (2003)

    CAS  Article  Google Scholar 

  27. 27

    Hazan, J. et al. Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nature Genet. 23, 296–303 (1999)

    CAS  Article  Google Scholar 

  28. 28

    Reid, E. et al. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet. 71, 1189–1194 (2002)

    CAS  Article  Google Scholar 

  29. 29

    Mersiyanova, I. V. et al. A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. Am. J. Hum. Genet. 67, 37–46 (2000)

    CAS  Article  Google Scholar 

  30. 30

    Perrot, R. & Eyer, J. Neuronal intermediate filaments and neurodegenerative disorders. Brain Res. Bull. 80, 282–295 (2009)

    CAS  Article  Google Scholar 

  31. 31

    Gudbjartsson, D. F. et al. Allegro, a new computer program for multipoint linkage analysis. Nature Genet. 25, 12–13 (2000)

    CAS  Article  Google Scholar 

  32. 32

    Choi, M. et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc. Natl Acad. Sci. USA 106, 19096–19101 (2009)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967 (2009)

    CAS  Article  Google Scholar 

  34. 34

    Li, R. et al. SNP detection for massively parallel whole-genome resequencing. Genome Res. 19, 1124–1132 (2009)

    CAS  Article  Google Scholar 

  35. 35

    Kumar, P. et al. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature Protocols 4, 1073–1081 (2009)

    CAS  Article  Google Scholar 

  36. 36

    The 1000 Genomes Project Consortium A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010)

    Article  Google Scholar 

  37. 37

    Bosco, D. A. et al. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nature Neurosci. 13, 1396–1403 (2010)

    CAS  Article  Google Scholar 

  38. 38

    Fallini, C. et al. High-efficiency transfection of cultured primary motor neurons to study protein localization, trafficking, and function. Mol. Neurodegener. 5, 17 (2010)

    Article  Google Scholar 

  39. 39

    Meijering, E. et al. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A 58A, 167–176 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

Support was provided by the ALS Therapy Alliance, Project ALS, P2ALS, the Angel Fund, the Pierre L. de Bourgknecht ALS Research Foundation, the Al-Athel ALS Research Foundation, the ALS Family Charitable Foundation and a Francesco Caleffi donation (N.T. and V.S.). Grant support was provided by the National Institutes of Health (NIH)/National Institute of Neurological Disorders and Stroke (NINDS) (1R01NS065847 (J.E.L.), 1R01NS050557 (R.H.B.), and RC2-NS070-342 (R.H.B.)), Muscular Dystrophy Association (MDA173851 (W.R.)) and AriSLA co-financed with support of ‘5x1000’—Healthcare research of the Ministry of Health (EXOMEFALS (N.T., C.G., V.S. and J.E.L.)). Support was provided by an SMA Europe fellowship to C.F. P.C.S. was supported through the auspices of H. R. Horvitz (Massachusetts Institute of Technology), an investigator of the Howard Hughes Medical Institute. We thank the laboratory of S. Doxsey, the UMass Medical School Digital Light Microscopy Core, the UMass Medical School Deep Sequencing Core, the Emory University Neuropathology Core, and M. Gearing and D. Cooper for their assistance.

Author information

Affiliations

Authors

Contributions

Sample collection, preparation and clinical evaluation: N.T., P.C.S., D.M.-Y., F.T., C.T., J.D.G., G.S., F.S., V.M., A.R., C.G., V.S., V.E.D., R.H.B. Performed experiments and data analysis: C.-H.W., C.F., N.T., P.J.K., P.C.S., K.P., P.L., D.M.B., J.E.K., P.G.-P., A.D.F., M.K., J.A., F.T., C.T., A.L.L., S.C.C., E.T.C., D.A.B., J.E.L. Scientific planning and direction: C.-H.W., C.F., N.T., D.M., M.J.M., J.A.Z., Z.-S.X., L.H.V, J.D.G., D.B.G., V.M., W.R., A.R., C.G., D.A.B., G.J.B., V.S., V.E.D., R.H.B., J.E.L. Initial manuscript preparation: C.-H.W., C.F., N.T., W.R., D.A.B., G.J.B., V.S., R.H.B., J.E.L.

Corresponding author

Correspondence to John E. Landers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-9 and Supplementary Figures 1-15. (PDF 16321 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, CH., Fallini, C., Ticozzi, N. et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488, 499–503 (2012). https://doi.org/10.1038/nature11280

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing