Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Programmable single-cell mammalian biocomputers


Synthetic biology has advanced the design of standardized control devices that program cellular functions and metabolic activities in living organisms1. Rational interconnection of these synthetic switches resulted in increasingly complex designer networks that execute input-triggered genetic instructions with precision, robustness and computational logic reminiscent of electronic circuits2,3. Using trigger-controlled transcription factors, which independently control gene expression4,5, and RNA-binding proteins that inhibit the translation of transcripts harbouring specific RNA target motifs6,7, we have designed a set of synthetic transcription–translation control devices that could be rewired in a plug-and-play manner. Here we show that these combinatorial circuits integrated a two-molecule input and performed digital computations with NOT, AND, NAND and N-IMPLY expression logic in single mammalian cells. Functional interconnection of two N-IMPLY variants resulted in bitwise intracellular XOR operations, and a combinatorial arrangement of three logic gates enabled independent cells to perform programmable half-subtractor and half-adder calculations. Individual mammalian cells capable of executing basic molecular arithmetic functions isolated or coordinated to metabolic activities in a predictable, precise and robust manner may provide new treatment strategies and bio-electronic interfaces in future gene-based and cell-based therapies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Genetic switchboard of the biocomputer circuitry.
Figure 2: Design and processing performance of synthetic N-IMPLY gates in human cells.
Figure 3: Design and computation characteristics of the synthetic mammalian XOR processor.
Figure 4: Input-programmable half-subtractor and half-adder operations.


  1. Khalil, A. S. & Collins, J. J. Synthetic biology: applications come of age. Nature Rev. Genet. 11, 367–379 (2010)

    CAS  Article  Google Scholar 

  2. Regot, S. et al. Distributed biological computation with multicellular engineered networks. Nature 469, 207–211 (2011)

    ADS  CAS  Article  Google Scholar 

  3. Tamsir, A., Tabor, J. J. & Voigt, C. A. Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469, 212–215 (2011)

    ADS  CAS  Article  Google Scholar 

  4. Gitzinger, M., Kemmer, C., El-Baba, M. D., Weber, W. & Fussenegger, M. Controlling transgene expression in subcutaneous implants using a skin lotion containing the apple metabolite phloretin. Proc. Natl Acad. Sci. USA 106, 10638–10643 (2009)

    ADS  CAS  Article  Google Scholar 

  5. Weber, W. et al. Macrolide-based transgene control in mammalian cells and mice. Nature Biotechnol. 20, 901–907 (2002)

    CAS  Article  Google Scholar 

  6. Paraskeva, E., Atzberger, A. & Hentze, M. W. A translational repression assay procedure (TRAP) for RNA–protein interactions in vivo . Proc. Natl Acad. Sci. USA 95, 951–956 (1998)

    ADS  CAS  Article  Google Scholar 

  7. Saito, H., Fujita, Y., Kashida, S., Hayashi, K. & Inoue, T. Synthetic human cell fate regulation by protein-driven RNA switches. Nature Commun. 2, 160 (2011)

    ADS  Article  Google Scholar 

  8. Friedland, A. E. et al. Synthetic gene networks that count. Science 324, 1199–1202 (2009)

    ADS  CAS  Article  Google Scholar 

  9. Leisner, M., Bleris, L., Lohmueller, J., Xie, Z. & Benenson, Y. Rationally designed logic integration of regulatory signals in mammalian cells. Nature Nanotechnol. 5, 666–670 (2010)

    ADS  CAS  Article  Google Scholar 

  10. Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. & Benenson, Y. Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333, 1307–1311 (2011)

    ADS  CAS  Article  Google Scholar 

  11. Culler, S. J., Hoff, K. G. & Smolke, C. D. Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science 330, 1251–1255 (2010)

    ADS  CAS  Article  Google Scholar 

  12. Weber, W. & Fussenegger, M. Molecular diversity–the toolbox for synthetic gene switches and networks. Curr. Opin. Chem. Biol. 15, 414–420 (2011)

    CAS  Article  Google Scholar 

  13. Ye, H., Daoud-El Baba, M., Peng, R. W. & Fussenegger, M. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332, 1565–1568 (2011)

    ADS  CAS  Article  Google Scholar 

  14. Kramer, B. P., Fischer, C. & Fussenegger, M. BioLogic gates enable logical transcription control in mammalian cells. Biotechnol. Bioeng. 87, 478–484 (2004)

    CAS  Article  Google Scholar 

  15. Win, M. N. & Smolke, C. D. Higher-order cellular information processing with synthetic RNA devices. Science 322, 456–460 (2008)

    ADS  CAS  Article  Google Scholar 

  16. Weber, W. et al. A synthetic time-delay circuit in mammalian cells and mice. Proc. Natl Acad. Sci. USA 104, 2643–2648 (2007)

    ADS  CAS  Article  Google Scholar 

  17. Weber, W., Daoud-El Baba, M. & Fussenegger, M. Synthetic ecosystems based on airborne inter- and intrakingdom communication. Proc. Natl Acad. Sci. USA 104, 10435–10440 (2007)

    ADS  CAS  Article  Google Scholar 

  18. You, L., Cox, R. S., III, Weiss, R. & Arnold, F. H. Programmed population control by cell–cell communication and regulated killing. Nature 428, 868–871 (2004)

    ADS  CAS  Article  Google Scholar 

  19. Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005)

    ADS  CAS  Article  Google Scholar 

  20. Greber, D. & Fussenegger, M. An engineered mammalian band-pass network. Nucleic Acids Res. 38, e174 (2010)

    Article  Google Scholar 

  21. Danino, T., Mondragon-Palomino, O., Tsimring, L. & Hasty, J. A synchronized quorum of genetic clocks. Nature 463, 326–330 (2010)

    ADS  CAS  Article  Google Scholar 

  22. Tigges, M., Marquez-Lago, T. T., Stelling, J. & Fussenegger, M. A tunable synthetic mammalian oscillator. Nature 457, 309–312 (2009)

    ADS  CAS  Article  Google Scholar 

  23. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990)

    ADS  CAS  Article  Google Scholar 

  24. Saito, H. et al. Synthetic translational regulation by an L7Ae-kink-turn RNP switch. Nature Chem. Biol. 6, 71–78 (2010)

    CAS  Article  Google Scholar 

  25. Stojanovic, M. N. & Stefanovic, D. Deoxyribozyme-based half-adder. J. Am. Chem. Soc. 125, 6673–6676 (2003)

    CAS  Article  Google Scholar 

  26. Bandyopadhyay, S. et al. Rewiring of genetic networks in response to DNA damage. Science 330, 1385–1389 (2010)

    ADS  CAS  Article  Google Scholar 

  27. Nissim, L. & Bar-Ziv, R. H. A tunable dual-promoter integrator for targeting of cancer cells. Mol. Syst. Biol. 6, 444 (2010)

    Article  Google Scholar 

  28. Chen, Y. Y., Jensen, M. C. & Smolke, C. D. Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems. Proc. Natl Acad. Sci. USA 107, 8531–8536 (2010)

    ADS  CAS  Article  Google Scholar 

  29. Kemmer, C. et al. A designer network coordinating bovine artificial insemination by ovulation-triggered release of implanted sperms. J. Control. Release 150, 23–29 (2011)

    CAS  Article  Google Scholar 

  30. Kemmer, C. et al. Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nature Biotechnol. 28, 355–360 (2010)

    CAS  Article  Google Scholar 

Download references


We thank R. Singer for providing pMS2dIFG, M. Tigges for generous advice, E. Gutzwiller for experimental support, and M. Dessing and V. Jäggin for assistance with flow cytometry. This work was supported by the Swiss National Science Foundation (grant no. 31003A-126022) and in part by EC Framework 7 (Persist).

Author information

Authors and Affiliations



S.A., D.A., M.M., M.W. and M.F. designed the project, analysed results and wrote the manuscript. S.A., D.A. and M.M. performed the experimental work.

Corresponding author

Correspondence to Martin Fussenegger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-11, Extended Figure legends for Figures 1-4 in the main paper and Supplementary Tables 1-2. (PDF 6932 kb)

Supplementary Movie 1

This movie file shows a time-lapse fluorescence microscopy of entire cell populations transfected with half-subtractor components programmed using different combinations of input signals (recorded for 75h; 1 frame/ 5 minutes; see also Fig. S7. (MP4 3231 kb)

Supplementary Movie 2

This movie file shows a time-lapse fluorescence microscopy of entire cell populations transfected with half-adder components programmed using different combinations of input signals (recorded for 75h; 1 frame/ 5 minutes; see also Fig. S7. (MP4 3134 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ausländer, S., Ausländer, D., Müller, M. et al. Programmable single-cell mammalian biocomputers. Nature 487, 123–127 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing