Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomic model of the type III secretion system needle

A Corrigendum to this article was published on 08 August 2012

Abstract

Pathogenic bacteria using a type III secretion system (T3SS)1,2 to manipulate host cells cause many different infections including Shigella dysentery, typhoid fever, enterohaemorrhagic colitis and bubonic plague. An essential part of the T3SS is a hollow needle-like protein filament through which effector proteins are injected into eukaryotic host cells3,4,5,6. Currently, the three-dimensional structure of the needle is unknown because it is not amenable to X-ray crystallography and solution NMR, as a result of its inherent non-crystallinity and insolubility. Cryo-electron microscopy combined with crystal or solution NMR subunit structures has recently provided a powerful hybrid approach for studying supramolecular assemblies7,8,9,10,11,12, resulting in low-resolution and medium-resolution models13,14,15,16,17. However, such approaches cannot deliver atomic details, especially of the crucial subunit–subunit interfaces, because of the limited cryo-electron microscopic resolution obtained in these studies. Here we report an alternative approach combining recombinant wild-type needle production, solid-state NMR, electron microscopy and Rosetta modelling to reveal the supramolecular interfaces and ultimately the complete atomic structure of the Salmonella typhimurium T3SS needle. We show that the 80-residue subunits form a right-handed helical assembly with roughly 11 subunits per two turns, similar to that of the flagellar filament of S. typhimurium. In contrast to established models of the needle in which the amino terminus of the protein subunit was assumed to be α-helical and positioned inside the needle, our model reveals an extended amino-terminal domain that is positioned on the surface of the needle, while the highly conserved carboxy terminus points towards the lumen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural data from ssNMR.
Figure 2: Architecture of the T3SS needle assembly as determined by ssNMR.
Figure 3: Complete atomic model of the T3SS needle.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The Salmonella typhimurium T3SS PrgI needle structure is deposited in the Protein Data Bank under the accession code 2LPZ.

References

  1. Galan, J. E. & Wolf-Watz, H. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567–573 (2006)

    Article  ADS  CAS  Google Scholar 

  2. Cornelis, G. R. The type III secretion injectisome. Nature Rev. Microbiol. 4, 811–825 (2006)

    Article  CAS  Google Scholar 

  3. Kubori, T. et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Kimbrough, T. G. & Miller, S. I. Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc. Natl Acad. Sci. USA 97, 11008–11013 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Tamano, K. et al. Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J. 19, 3876–3887 (2000)

    Article  CAS  Google Scholar 

  6. Blocker, A. J. et al. What’s the point of the type III secretion system needle? Proc. Natl Acad. Sci. USA 105, 6507–6513 (2008)

    Article  ADS  CAS  Google Scholar 

  7. Nogales, E. & Grigorieff, N. Molecular machines: putting the pieces together. J. Cell Biol. 152, F1–F10 (2001)

    Article  CAS  Google Scholar 

  8. Volkmann, N. & Hanein, D. Docking of atomic models into reconstructions from electron microscopy. Methods Enzymol. 374, 204–225 (2003)

    Article  CAS  Google Scholar 

  9. Rossmann, M. G., Morais, M. C., Leiman, P. G. & Zhang, W. Combining X-ray crystallography and electron microscopy. Structure 13, 355–362 (2005)

    Article  CAS  Google Scholar 

  10. Spreter, T. et al. A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system. Nature Struct. Mol. Biol. 16, 468–476 (2009)

    Article  CAS  Google Scholar 

  11. Baker, M. L., Zhang, J., Ludtke, S. J. & Chiu, W. Cryo-EM of macromolecular assemblies at near-atomic resolution. Nature Protocols 5, 1697–1708 (2010)

    Article  CAS  Google Scholar 

  12. Schraidt, O. & Marlovits, T. C. Three-dimensional model of Salmonella’s needle complex at subnanometer resolution. Science 331, 1192–1195 (2011)

    Article  ADS  CAS  Google Scholar 

  13. Fujii, T., Iwane, A. H., Yanagida, T. & Namba, K. Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 467, 724–728 (2010)

    Article  ADS  CAS  Google Scholar 

  14. Yonekura, K., Maki-Yonekura, S. & Namba, K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424, 643–650 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Wang, H. W. & Nogales, E. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435, 911–915 (2005)

    Article  ADS  CAS  Google Scholar 

  16. Craig, L. et al. Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol. Cell 23, 651–662 (2006)

    Article  CAS  Google Scholar 

  17. Deane, J. E. et al. Molecular model of a type III secretion system needle: implications for host-cell sensing. Proc. Natl Acad. Sci. USA 103, 12529–12533 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Poyraz, O. et al. Protein refolding is required for assembly of the type three secretion needle. Nature Struct. Mol. Biol. 17, 788–792 (2010)

    Article  CAS  Google Scholar 

  19. Loquet, A., Lv, G., Giller, K., Becker, S. & Lange, A. 13C spin dilution for simplified and complete solid-state NMR resonance assignment of insoluble biological assemblies. J. Am. Chem. Soc. 133, 4722–4725 (2011)

    Article  CAS  Google Scholar 

  20. Hong, M. Determination of multiple φ-torsion angles in proteins by selective and extensive 13C labeling and two-dimensional solid-state NMR. J. Magn. Reson. 139, 389–401 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Lundstrom, P. et al. Fractional 13C enrichment of isolated carbons using [1-13C]- or [2-13C]-glucose facilitates the accurate measurement of dynamics at backbone Cα and side-chain methyl positions in proteins. J. Biomol. NMR 38, 199–212 (2007)

    Article  Google Scholar 

  22. Lewandowski, J. R., De Paepe, G. & Griffin, R. G. Proton assisted insensitive nuclei cross polarization. J. Am. Chem. Soc. 129, 728–729 (2007)

    Article  CAS  Google Scholar 

  23. Wasmer, C. et al. Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319, 1523–1526 (2008)

    Article  ADS  CAS  Google Scholar 

  24. Loquet, A., Giller, K., Becker, S. & Lange, A. Supramolecular interactions probed by 13C–13C solid-state NMR spectroscopy. J. Am. Chem. Soc. 132, 15164–15166 (2010)

    Article  CAS  Google Scholar 

  25. Galkin, V. E., Schmied, W. H., Schraidt, O., Marlovits, T. C. & Egelman, E. H. The structure of the Salmonella typhimurium type III secretion system needle shows divergence from the flagellar system. J. Mol. Biol. 396, 1392–1397 (2010)

    Article  CAS  Google Scholar 

  26. Das, R. et al. Simultaneous prediction of protein folding and docking at high resolution. Proc. Natl Acad. Sci. USA 106, 18978–18983 (2009)

    Article  ADS  CAS  Google Scholar 

  27. Kenjale, R. et al. The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus. J. Biol. Chem. 280, 42929–42937 (2005)

    Article  CAS  Google Scholar 

  28. Goldbourt, A., Gross, B. J., Day, L. A. & McDermott, A. E. Filamentous phage studied by magic-angle spinning NMR: resonance assignment and secondary structure of the coat protein in Pf1. J. Am. Chem. Soc. 129, 2338–2344 (2007)

    Article  CAS  Google Scholar 

  29. Han, Y. et al. Solid-state NMR studies of HIV-1 capsid protein assemblies. J. Am. Chem. Soc. 132, 1976–1987 (2010)

    Article  CAS  Google Scholar 

  30. Jehle, S. et al. Solid-state NMR and SAXS studies provide a structural basis for the activation of αB-crystallin oligomers. Nature Struct. Mol. Biol. 17, 1037–1042 (2010)

    Article  CAS  Google Scholar 

  31. Bockmann, A. et al. Characterization of different water pools in solid-state NMR protein samples. J. Biomol. NMR 45, 319–327 (2009)

    Article  CAS  Google Scholar 

  32. Fung, B. M., Khitrin, A. K. & Ermolaev, K. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97–101 (2000)

    Article  ADS  CAS  Google Scholar 

  33. Szeverenyi, N. M., Sullivan, M. J. & Maciel, G. E. Observation of spin exchange by two-dimensional Fourier-transform C-13 cross polarization-magic-angle spinning. J. Magn. Reson. 47, 462–475 (1982)

    ADS  CAS  Google Scholar 

  34. Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005)

    Article  CAS  Google Scholar 

  35. Bradley, P., Misura, K. M. & Baker, D. Toward high-resolution de novo structure prediction for small proteins. Science 309, 1868–1871 (2005)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. C. Marlovits and E. H. Egelman for providing the S. typhimurium T3SS needle cryo-electron microscopy density map; F. DiMaio and J.-P. Demers for discussions; and G. Wolf, B. Angerstein and G. Heim for technical help. This work was supported by the Max Planck Society (to C. Griesinger), the Deutsche Forschungsgemeinschaft (Emmy Noether Fellowship to A. Lange), the Fondation Bettencourt Schueller (to A. Loquet), the National Institutes of Health (1 R01 GM092802-01 to D.B.), EMBO (postdoctoral fellowship to A. Loquet), and the European Union Seventh Framework Program under Grant Agreement 261863 (Bio-NMR).

Author information

Authors and Affiliations

Authors

Contributions

A. Loquet performed ssNMR experiments. A. Loquet and A. Lange analysed ssNMR data. N.S. and D.B. performed structure calculations. K.G. and S.B. expressed, purified and polymerized in vitro T3SS needles. R.G. and M.K. performed the in vivo studies. C. Griesinger analysed NMR data. D.R. and C. Goosmann performed electron microscopy studies. A. Loquet and A. Lange wrote the paper; all authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Michael Kolbe, Stefan Becker or Adam Lange.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-18, Supplementary Tables 1-3 and Supplementary References. (PDF 7243 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loquet, A., Sgourakis, N., Gupta, R. et al. Atomic model of the type III secretion system needle. Nature 486, 276–279 (2012). https://doi.org/10.1038/nature11079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11079

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing