Crystal structure of a voltage-gated sodium channel in two potentially inactivated states

Abstract

In excitable cells, voltage-gated sodium (NaV) channels activate to initiate action potentials and then undergo fast and slow inactivation processes that terminate their ionic conductance1,2. Inactivation is a hallmark of NaV channel function and is critical for control of membrane excitability3, but the structural basis for this process has remained elusive. Here we report crystallographic snapshots of the wild-type NaVAb channel from Arcobacter butzleri captured in two potentially inactivated states at 3.2 Å resolution. Compared to previous structures of NaVAb channels with cysteine mutations in the pore-lining S6 helices (ref. 4), the S6 helices and the intracellular activation gate have undergone significant rearrangements: one pair of S6 helices has collapsed towards the central pore axis and the other S6 pair has moved outward to produce a striking dimer-of-dimers configuration. An increase in global structural asymmetry is observed throughout our wild-type NaVAb models, reshaping the ion selectivity filter at the extracellular end of the pore, the central cavity and its residues that are analogous to the mammalian drug receptor site, and the lateral pore fenestrations. The voltage-sensing domains have also shifted around the perimeter of the pore module in wild-type NaVAb, compared to the mutant channel, and local structural changes identify a conserved interaction network that connects distant molecular determinants involved in NaV channel gating and inactivation. These potential inactivated-state structures provide new insights into NaV channel gating and novel avenues to drug development and therapy for a range of debilitating NaV channelopathies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structure and function of Na V Ab.
Figure 2: Structural changes in the selectivity filter of Na V Ab.
Figure 3: Conformational changes in the pore module of Na V Ab.
Figure 4: Structure and coupling of the VSD in Na V Ab.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and structure factors have been deposited in the Protein Data Bank under accession code 4EKW.

References

  1. 1

    Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952)

    CAS  Article  Google Scholar 

  2. 2

    Rudy, B. Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance. J. Physiol. (Lond.) 283, 1–21 (1978)

    CAS  Article  Google Scholar 

  3. 3

    Vilin, Y. Y. & Ruben, P. C. Slow inactivation in voltage-gated sodium channels: molecular substrates and contributions to channelopathies. Cell Biochem. Biophys. 35, 171–190 (2001)

    CAS  Article  Google Scholar 

  4. 4

    Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W. A. The crystal structure of a voltage-gated sodium channel. Nature 475, 353–358 (2011)

    CAS  Article  Google Scholar 

  5. 5

    Long, S. B., Tao, X., Campbell, E. B. & MacKinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376–382 (2007)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Ren, D. et al. A prokaryotic voltage-gated sodium channel. Science 294, 2372–2375 (2001)

    CAS  ADS  Article  Google Scholar 

  7. 7

    Catterall, W. A. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13–25 (2000)

    CAS  Article  Google Scholar 

  8. 8

    Armstrong, C. M., Bezanilla, F. & Rojas, E. Destruction of sodium conductance inactivation in squid axons perfused with pronase. J. Gen. Physiol. 62, 375–391 (1973)

    CAS  Article  Google Scholar 

  9. 9

    West, J. W. et al. A cluster of hydrophobic amino acid residues required for fast Na+ channel inactivation. Proc. Natl Acad. Sci. USA 89, 10910–10914 (1992)

    CAS  ADS  Article  Google Scholar 

  10. 10

    Eaholtz, G., Scheuer, T. & Catterall, W. A. Restoration of inactivation and block of open sodium channels by an inactivation gate peptide. Neuron 12, 1041–1048 (1994)

    CAS  Article  Google Scholar 

  11. 11

    Nesterenko, V. V., Zygmunt, A. C., Rajamani, S., Belardinelli, L. & Antzelevitch, C. Mechanisms of atrial-selective block of Na+ channels by ranolazine: II. Insights from a mathematical model. Am. J. Physiol. Heart Circ. Physiol. 301, H1615–H1624 (2011)

    CAS  Article  Google Scholar 

  12. 12

    Wang, Y. et al. Merging structural motifs of functionalized amino acids and α-aminoamides results in novel anticonvulsant compounds with significant effects on slow and fast inactivation of voltage-gated sodium channels and in the treatment of neuropathic pain. ACS Chem. Neurosci. 2, 317–322 (2011)

    CAS  Article  Google Scholar 

  13. 13

    Pavlov, E. et al. The pore, not cytoplasmic domains, underlies inactivation in a prokaryotic sodium channel. Biophys. J. 89, 232–242 (2005)

    CAS  ADS  Article  Google Scholar 

  14. 14

    Yue, L., Navarro, B., Ren, D., Ramos, A. & Clapham, D. E. The cation selectivity filter of the bacterial sodium channel, NaChBac. J. Gen. Physiol. 120, 845–853 (2002)

    CAS  Article  Google Scholar 

  15. 15

    Zhao, Y., Yarov-Yarovoy, V., Scheuer, T. & Catterall, W. A. A gating hinge in Na+ channels: a molecular switch for electrical signaling. Neuron 41, 859–865 (2004)

    CAS  Article  Google Scholar 

  16. 16

    Zhao, Y., Scheuer, T. & Catterall, W. A. Reversed voltage-dependent gating of a bacterial sodium channel with proline substitutions in the S6 transmembrane segment. Proc. Natl Acad. Sci. USA 101, 17873–17878 (2004)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Irie, K. et al. Comparative study of the gating motif and C-type inactivation in prokaryotic voltage-gated sodium channels. J. Biol. Chem. 285, 3685–3694 (2010)

    CAS  Article  Google Scholar 

  18. 18

    Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998)

    CAS  ADS  Article  Google Scholar 

  19. 19

    Cuello, L. G., Jogini, V., Cortes, D. M. & Perozo, E. Structural mechanism of C-type inactivation in K+ channels. Nature 466, 203–208 (2010)

    CAS  ADS  Article  Google Scholar 

  20. 20

    Chen, Y., Yu, F. H., Surmeier, D. J., Scheuer, T. & Catterall, W. A. Neuromodulation of Na+ channel slow inactivation via cAMP-dependent protein kinase and protein kinase C. Neuron 49, 409–420 (2006)

    CAS  Article  Google Scholar 

  21. 21

    Wang, S. Y. & Wang, G. K. A mutation in segment I-S6 alters slow inactivation of sodium channels. Biophys. J. 72, 1633–1640 (1997)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Vilin, Y. Y., Fujimoto, E. & Ruben, P. C. A single residue differentiates between human cardiac and skeletal muscle Na+ channel slow inactivation. Biophys. J. 80, 2221–2230 (2001)

    CAS  Article  Google Scholar 

  23. 23

    Zarrabi, T. et al. A molecular switch between the outer and the inner vestibules of the voltage-gated Na+ channel. J. Biol. Chem. 285, 39458–39470 (2010)

    CAS  Article  Google Scholar 

  24. 24

    Ragsdale, D. S., McPhee, J. C., Scheuer, T. & Catterall, W. A. Molecular determinants of state-dependent block of sodium channels by local anesthetics. Science 265, 1724–1728 (1994)

    CAS  ADS  Article  Google Scholar 

  25. 25

    Yarov-Yarovoy, V. et al. Molecular determinants of voltage-dependent gating and binding of pore-blocking drugs in transmembrane segment IIIS6 of the Na+ channel α subunit. J. Biol. Chem. 276, 20–27 (2001)

    CAS  Article  Google Scholar 

  26. 26

    Yarov-Yarovoy, V. et al. Role of amino acid residues in transmembrane segments IS6 and IIS6 of the sodium channel α subunit in voltage-dependent gating and drug block. J. Biol. Chem. 277, 35393–35401 (2002)

    CAS  Article  Google Scholar 

  27. 27

    Nau, C. & Wang, G. K. Interactions of local anesthetics with voltage-gated Na+ channels. J. Membr. Biol. 201, 1–8 (2004)

    CAS  Article  Google Scholar 

  28. 28

    Hille, B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J. Gen. Physiol. 69, 497–515 (1977)

    CAS  Article  Google Scholar 

  29. 29

    Villalba-Galea, C. A., Sandtner, W., Starace, D. M. & Bezanilla, F. S4-based voltage sensors have three major conformations. Proc. Natl Acad. Sci. USA 105, 17600–17607 (2008)

    CAS  ADS  Article  Google Scholar 

  30. 30

    Wang, J. et al. Mapping the receptor site for α-scorpion toxins on a Na+ channel voltage sensor. Proc. Natl Acad. Sci. USA 108, 15426–15431 (2011)

    CAS  ADS  Article  Google Scholar 

  31. 31

    Koth, C. M. & Payandeh, J. Strategies for the cloning and expression of membrane proteins. Adv. Protein Chem. Struct. Biol. 76, 43–86 (2009)

    CAS  Article  Google Scholar 

  32. 32

    Faham, S. et al. Crystallization of bacteriorhodopsin from bicelle formulations at room temperature. Protein Sci. 14, 836–840 (2005)

    CAS  Article  Google Scholar 

  33. 33

    Kauffmann, B., Weiss, M. S., Lamzin, V. S. & Schmidt, A. How to avoid premature decay of your macromolecular crystal: a quick soak for long life. Structure 14, 1099–1105 (2006)

    CAS  Article  Google Scholar 

  34. 34

    Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    CAS  Article  Google Scholar 

  35. 35

    CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  36. 36

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    CAS  Article  Google Scholar 

  37. 37

    Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  38. 38

    Painter, J. & Merritt, E. A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D 62, 439–450 (2006)

    Article  Google Scholar 

  39. 39

    Winn, M. D., Murshudov, G. N. & Papiz, M. Z. Macromolecular TLS refinement in REFMAC at moderate resolutions. Methods Enzymol. 374, 300–321 (2003)

    CAS  Article  Google Scholar 

  40. 40

    Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    CAS  Article  Google Scholar 

  41. 41

    Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  42. 42

    Laskowski, R. A., Moss, D. S. & Thornton, J. M. Main-chain bond lengths and bond angles in protein structures. J. Mol. Biol. 231, 1049–1067 (1993)

    CAS  Article  Google Scholar 

  43. 43

    Petrek, M., Kosinova, P., Koca, J. & Otyepka, M. MOLE: a Voronoi diagram-based explorer of molecular channels, pores, and tunnels. Structure 15, 1357–1363 (2007)

    CAS  Article  Google Scholar 

  44. 44

    Ho, B. K. & Gruswitz, F. HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8, 49 (2008)

    Article  Google Scholar 

  45. 45

    Kleywegt, G. J. Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr. D 52, 842–857 (1996)

    CAS  Article  Google Scholar 

  46. 46

    PyMOL Molecular Graphics System . Version 1.2r3pre (Schrödinger LLC).

Download references

Acknowledgements

We thank B. Hille for comments on a draft of the manuscript and members of the Zheng and Catterall groups for their insight and support throughout this project. We are grateful to the beamline staff at the Advanced Light Source (BL8.2.1 and BL8.2.2) for their assistance during data collection. J.P. acknowledges support from a Canadian Institutes of Health Research fellowship and the support of N. and E. Payandeh. This work was supported by grants from the National Institutes of Health (R01 NS15751 and U01 NS058039 to W.A.C.) and by the Howard Hughes Medical Institute (N.Z.). We dedicate this work to the memory of our colleague Laura Sheard.

Author information

Affiliations

Authors

Contributions

W.A.C. and N.Z. are both senior authors. J.P., N.Z. and W.A.C. conceived and J.P. conducted the protein purification and crystallization experiments. J.P. and N.Z. determined and analysed the structure of NaVAb. T.M.G., T.S. and W.A.C. conceived, T.M.G. conducted, and T.M.G., T.S. and W.A.C. analysed the electrophysiology experiments. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Ning Zheng or William A. Catterall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary References, Supplementary Tables 1-3 and Supplementary Figures 1-10. (PDF 8111 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Payandeh, J., Gamal El-Din, T., Scheuer, T. et al. Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 486, 135–139 (2012). https://doi.org/10.1038/nature11077

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.