Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A new hominin foot from Ethiopia shows multiple Pliocene bipedal adaptations

Abstract

A newly discovered partial hominin foot skeleton from eastern Africa indicates the presence of more than one hominin locomotor adaptation at the beginning of the Late Pliocene epoch. Here we show that new pedal elements, dated to about 3.4 million years ago, belong to a species that does not match the contemporaneous Australopithecus afarensis in its morphology and inferred locomotor adaptations, but instead are more similar to the earlier Ardipithecus ramidus in possessing an opposable great toe. This not only indicates the presence of more than one hominin species at the beginning of the Late Pliocene of eastern Africa, but also indicates the persistence of a species with Ar. ramidus-like locomotor adaptation into the Late Pliocene.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Location map of the Burtele (BRT) vertebrate localities (BRT-VP-1 and BRT-VP-2) in the Woranso-Mille study area.
Figure 2: Pedal elements of BRT-VP-2/73.
Figure 3: Box-and-whisker plots of pedal element comparative ratios in cercopithecines, colobines, chimpanzees, gorillas, humans and fossil specimens.
Figure 4: Principal component analysis (PCA) of metatarsal ratios.
Figure 5: Stratigraphic section at the BRT localities and placement of the BRT-VP-2/73 partial foot skeleton.

References

  1. 1

    Haile-Selassie, Y., Deino, A., Saylor, B., Umer, M. & Latimer, B. Preliminary geology and paleontology of new hominid-bearing Pliocene localities in the central Afar region of Ethiopia. Anthropol. Sci. 115, 215–222 (2007)

    Article  Google Scholar 

  2. 2

    Deino, A. L. et al. 40Ar/39Ar dating, paleomagnetism, and tephrochemistry of Pliocene strata of the hominid-bearing Woranso-Mille area, west-central Afar Rift, Ethiopia. J. Hum. Evol. 58, 111–126 (2010)

    Article  Google Scholar 

  3. 3

    Haile-Selassie, Y., Saylor, B. Z., Deino, A., Alene, M. & Latimer, B. New hominid fossils from Woranso-Mille (Central Afar, Ethiopia) the taxonomy of early Australopithecus. Am. J. Phys. Anthropol. 141, 406–417 (2009)

    Google Scholar 

  4. 4

    Haile-Selassie, Y. et al. An early Australopithecus afarensis postcranium from Woranso-Mille, Ethiopia. Proc. Natl Acad. Sci. USA 107, 12121–12126 (2010)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Haile-Selassie, Y. Phylogeny of early Australopithecus: new fossil evidence from the Woranso-Mille (Central Afar, Ethiopia). Phil. Trans. R. Soc. B 365, 3323–3331 (2010)

    Article  Google Scholar 

  6. 6

    Latimer, B. M. & Lovejoy, C. O. Hominid tarsal, metatarsal, and phalangeal bones recovered from the Hadar formation: 1974–1977 collections. Am. J. Phys. Anthropol. 57, 701–719 (1982)

    Article  Google Scholar 

  7. 7

    Day, M. H. & Napier, J. R. Hominid fossils from Bed I, Olduvai Gorge, Tanganyika: fossil footbones. Nature 201, 969–970 (1964)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Zipfel, B. et al. The foot and ankle of Australopithecus sediba. Science 333, 1417–1420 (2011)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Clarke, R. J. & Tobias, P. V. Sterkfontein Member 2 foot bones of the oldest South African hominid. Science 269, 521–524 (1995)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Deloison, Y. Anatomie des os fossiles de pieds des hominides d’Afrique du Sud. Biomet. Hum. Anthropol. 21, 189–230 (2003)

    Google Scholar 

  11. 11

    Lovejoy, O. C., Latimer, B., Suwa, G., Asfaw, B. & White, T. D. Combining prehension and propulsion: The foot of Ardipithecus ramidus. Science 326, 72 (2009)

    ADS  Article  Google Scholar 

  12. 12

    Ward, C. V., Kimbel, W. H. & Johanson, D. C. Complete fourth metatarsal and arches in the foot of Australopithecus afarensis. Science 331, 750–753 (2011)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Harcourt-Smith, W. E. H. & Aiello, L. C. Fossils, feet and the evolution of human bipedal locomotion. J. Anat. 204, 403–416 (2004)

    CAS  Article  Google Scholar 

  14. 14

    Latimer, B. M. & Lovejoy, C. O. Hallucal tarsometatarsal joint in Australopithecus afarensis. Am. J. Phys. Anthropol. 82, 125–133 (1990)

    CAS  Article  Google Scholar 

  15. 15

    Griffin, N. L. & Richmond, B. G. Joint orientation and function in great ape and human proximal pedal phalanges. Am. J. Phys. Anthropol. 141, 116–123 (2010)

    PubMed  Google Scholar 

  16. 16

    Latimer, B. M. & Lovejoy, C. O. Metatarsophalangeal joints of Australopithecus afarensis. Am. J. Phys. Anthropol. 83, 13–23 (1990)

    CAS  Article  Google Scholar 

  17. 17

    Walker, A. C. & Pickford, M. in New Interpretaions of Ape and Human Ancestry (eds Ciochon, R. L. & Corruccini, R. S.) 325–413 (Plenum, 1983)

    Book  Google Scholar 

  18. 18

    White, T. D. & Suwa, G. Hominid footprints at Laetoli: facts and interpretations. Am. J. Phys. Anthropol. 72, 485–514 (1987)

    CAS  Article  Google Scholar 

  19. 19

    Elftman, H. & Manter, J. Chimpanzee and human feet in bipedal walking. Am. J. Phys. Anthropol. 20, 69–79 (1935)

    Article  Google Scholar 

  20. 20

    Elftman, H. & Manter, J. The evolution of the human foot with special reference to the joints. J. Anat. 70, 56–67 (1935)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    DeSilva, J. M. Functional morphology of the ankle and the likelihood of climbing in early hominins. Proc. Natl Acad. Sci. USA 106, 6567–6572 (2009)

    ADS  CAS  Article  Google Scholar 

  22. 22

    D’Aout, K., Aerts, P., De Clercq, D., De Meester, K. & Van Elsacker, L. Segment and joint angles of hind limb during bipedal and quadrupedal walking of the bonobo (Pan paniscus). Am. J. Phys. Anthropol. 119, 37–51 (2002)

    Article  Google Scholar 

  23. 23

    Vereecke, E., D’Aout, K., De Clercq, D., Van Elsacker, L. & Aerts, P. Dynamic plantar pressure distribution during terrestrial locomotion of bonobos (Pan paniscus). Am. J. Phys. Anthropol. 120, 373–383 (2003)

    Article  Google Scholar 

  24. 24

    Walter, R. C. & Aronson, J. L. Age and source of the Sidi Hakoma Tuff, Hadar Formation, Ethiopia. J. Hum. Evol. 25, 229–240 (1993)

    Article  Google Scholar 

  25. 25

    deMenocal, P. B. & Brown, F. H. in Hominid Evolution and Climatic Change in Europe (eds Agusti, J., Rook, L. & Andrews, P.) 23–54 (Cambridge Univ. Press, 1999)

    Book  Google Scholar 

  26. 26

    McDougall, I. & Brown, F. H. Geochronology of the pre-KBS Tuff sequence, Omo Group, Turkana Basin. J. Geol. Soc. Lond. 165, 549–562 (2008)

    CAS  Article  Google Scholar 

  27. 27

    Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H. & Eiler, J. M. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proc. Natl Acad. Sci. USA 107, 11245–11249 (2010)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Kuiper, K. F. et al. Synchronizing rock clocks of earth history. Science 320, 500–504 (2008)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the Authority for Research and Conservation of Cultural Heritage and the Afar Regional State of Ethiopia for permission to conduct field and laboratory research, and the Afar people of the Woranso-Mille area for support in the field. We also thank M. Asnake, R. Bernor, S. Frost, D. Geraads, I. Giaourtsakis, M. Lewis, W. Sanders and L. Werdelin for faunal identifications. We thank B. Passey for aid with isotope analyses; E. Guthrie for unpublished primary data; L. Russell for photography; S. Melillo and H. Gebreyesus for fieldwork; O. Lovejoy, S. Simpson, G. Suwa and T. White for comments and discussions; D. Su for discussions and assistance in statistical analysis; and L. Jellema for assistance in photography. This research was supported by funding from the LSB Leakey Foundation, the National Geographic Society, the Cleveland Museum of Natural History, and NSF grants BCS-0234320, BCS-0321893, BCS-0542037 and BCS-1124705.

Author information

Affiliations

Authors

Contributions

Y.H.-S. and B.M.L. conducted the description and comparative analysis. B.Z.S., N.E.L. and M.A. compiled the stratigraphic sequence. A.D. conducted the radiometric dating. N.E.L. conducted stable isotope analysis. Y.H.-S. and B.M.L. wrote the paper with input from all authors.

Corresponding author

Correspondence to Yohannes Haile-Selassie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-7, Supplementary Text, Supplementary Tables 1-10 and Supplementary References. (PDF 5330 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haile-Selassie, Y., Saylor, B., Deino, A. et al. A new hominin foot from Ethiopia shows multiple Pliocene bipedal adaptations. Nature 483, 565–569 (2012). https://doi.org/10.1038/nature10922

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing