Gain control by layer six in cortical circuits of vision

Subjects

Abstract

After entering the cerebral cortex, sensory information spreads through six different horizontal neuronal layers that are interconnected by vertical axonal projections. It is believed that through these projections layers can influence each other's response to sensory stimuli, but the specific role that each layer has in cortical processing is still poorly understood. Here we show that layer six in the primary visual cortex of the mouse has a crucial role in controlling the gain of visually evoked activity in neurons of the upper layers without changing their tuning to orientation. This gain modulation results from the coordinated action of layer six intracortical projections to superficial layers and deep projections to the thalamus, with a substantial role of the intracortical circuit. This study establishes layer six as a major mediator of cortical gain modulation and suggests that it could be a node through which convergent inputs from several brain areas can regulate the earliest steps of cortical visual processing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Photostimulation of L6 suppresses visual responses in the other layers.
Figure 2: L6 bidirectionally modulates the gain of visual responses without altering tuning.
Figure 3: Photostimulation of L6 suppresses cortex faster than it suppresses dLGN.
Figure 4: Photostimulation of L6 recruits intracortical synaptic inhibition.
Figure 5: L6 suppresses upper layers largely through intracortical circuits.

References

  1. 1

    Lorente de No, R. in Physiology of the Nervous System (ed. Fulton, J.F. ) 274–301 (Oxford Univ. Press, 1943)

    Google Scholar 

  2. 2

    Douglas, R. J. & Martin, K. A. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004)

    CAS  Article  Google Scholar 

  3. 3

    Lefort, S., Tomm, C., Floyd Sarria, J. C. & Petersen, C. C. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301–316 (2009)

    CAS  Article  Google Scholar 

  4. 4

    Thomson, A. M. & Bannister, A. P. Interlaminar connections in the neocortex. Cereb. Cortex 13, 5–14 (2003)

    Article  Google Scholar 

  5. 5

    Callaway, E. M. Local circuits in primary visual cortex of the macaque monkey. Annu. Rev. Neurosci. 21, 47–74 (1998)

    CAS  Article  Google Scholar 

  6. 6

    Dantzker, J. L. & Callaway, E. M. Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nature Neurosci. 3, 701–707 (2000)

    CAS  Article  Google Scholar 

  7. 7

    Thomson, A. M. Neocortical layer 6, a review. Front. Neuroanat. 4, 13 (2010)

    PubMed  PubMed Central  Google Scholar 

  8. 8

    Bourassa, J. & Deschenes, M. Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer. Neuroscience 66, 253–263 (1995)

    CAS  Article  Google Scholar 

  9. 9

    Binzegger, T., Douglas, R. J. & Martin, K. A. Stereotypical bouton clustering of individual neurons in cat primary visual cortex. J. Neurosci. 27, 12242–12254 (2007)

    CAS  Article  Google Scholar 

  10. 10

    Zhang, Z. W. & Deschenes, M. Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: a single-cell labeling study. J. Neurosci. 17, 6365–6379 (1997)

    CAS  Article  Google Scholar 

  11. 11

    Jones, E. G. The Thalamus (Cambridge Univ. Press, 2007)

    Google Scholar 

  12. 12

    Guillery, R. W. & Sherman, S. M. Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron 33, 163–175 (2002)

    CAS  Article  Google Scholar 

  13. 13

    Sillito, A. M. & Jones, H. E. Corticothalamic interactions in the transfer of visual information. Phil. Trans. R. Soc. Lond. B 357, 1739–1752 (2002)

    Article  Google Scholar 

  14. 14

    Briggs, F. & Usrey, W. M. Emerging views of corticothalamic function. Curr. Opin. Neurobiol. 18, 403–407 (2008)

    CAS  Article  Google Scholar 

  15. 15

    Cudeiro, J. & Sillito, A. M. Looking back: corticothalamic feedback and early visual processing. Trends Neurosci. 29, 298–306 (2006)

    CAS  Article  Google Scholar 

  16. 16

    Sillito, A. M., Cudeiro, J. & Jones, H. E. Always returning: feedback and sensory processing in visual cortex and thalamus. Trends Neurosci. 29, 307–316 (2006)

    CAS  Article  Google Scholar 

  17. 17

    Bolz, J. & Gilbert, C. D. Generation of end-inhibition in the visual cortex via interlaminar connections. Nature 320, 362–365 (1986)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Grieve, K. L. & Sillito, A. M. A re-appraisal of the role of layer VI of the visual cortex in the generation of cortical end inhibition. Exp. Brain Res. 87, 521–529 (1991)

    CAS  Article  Google Scholar 

  19. 19

    Gong, S. et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J. Neurosci. 27, 9817–9823 (2007)

    CAS  Article  Google Scholar 

  20. 20

    Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA 100, 13940–13945 (2003)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neurosci. 8, 1263–1268 (2005)

    CAS  Article  Google Scholar 

  22. 22

    Niell, C. M. & Stryker, M. P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008)

    CAS  Article  Google Scholar 

  23. 23

    Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)

    CAS  Article  Google Scholar 

  24. 24

    Chow, B. Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010)

    CAS  Article  Google Scholar 

  26. 26

    Rafols, J. A. & Valverde, F. The structure of the dorsal lateral geniculate nucleus in the mouse. A Golgi and electron microscopic study. J. Comp. Neurol. 150, 303–331 (1973)

    CAS  Article  Google Scholar 

  27. 27

    Salinas, E. & Thier, P. Gain modulation: a major computational principle of the central nervous system. Neuron 27, 15–21 (2000)

    CAS  Article  Google Scholar 

  28. 28

    Brotchie, P. R., Andersen, R. A., Snyder, L. H. & Goodman, S. J. Head position signals used by parietal neurons to encode locations of visual stimuli. Nature 375, 232–235 (1995)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Treue, S. & Martinez Trujillo, J. C. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 (1999)

    ADS  CAS  Article  Google Scholar 

  30. 30

    McAdams, C. J. & Maunsell, J. H. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431–441 (1999)

    CAS  Article  Google Scholar 

  31. 31

    Silver, R. A., Lubke, J., Sakmann, B. & Feldmeyer, D. High-probability uniquantal transmission at excitatory synapses in barrel cortex. Science 302, 1981–1984 (2003)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Adesnik, H. & Scanziani, M. Lateral competition for cortical space by layer-specific horizontal circuits. Nature 464, 1155–1160 (2010)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Markram, H. et al. Interneurons of the neocortical inhibitory system. Nature Rev. Neurosci. 5, 793–807 (2004)

    CAS  Article  Google Scholar 

  34. 34

    Ascoli, G. A. et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Rev. Neurosci. 9, 557–568 (2008)

    CAS  Article  Google Scholar 

  35. 35

    Chance, F. S., Abbott, L. F. & Reyes, A. D. Gain modulation from background synaptic input. Neuron 35, 773–782 (2002)

    CAS  Article  Google Scholar 

  36. 36

    Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998)

    CAS  Article  Google Scholar 

  37. 37

    Murphy, B. K. & Miller, K. D. Multiplicative gain changes are induced by excitation or inhibition alone. J. Neurosci. 23, 10040–10051 (2003)

    CAS  Article  Google Scholar 

  38. 38

    Andolina, I. M., Jones, H. E., Wang, W. & Sillito, A. M. Corticothalamic feedback enhances stimulus response precision in the visual system. Proc. Natl Acad. Sci. USA 104, 1685–1690 (2007)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Wang, W., Jones, H. E., Andolina, I. M., Salt, T. E. & Sillito, A. M. Functional alignment of feedback effects from visual cortex to thalamus. Nature Neurosci. 9, 1330–1336 (2006)

    CAS  Article  Google Scholar 

  40. 40

    Wörgotter, F., Nelle, E., Li, B. & Funke, K. The influence of corticofugal feedback on the temporal structure of visual responses of cat thalamic relay cells. J. Physiol. 509, 797–815 (1998)

    Article  Google Scholar 

  41. 41

    McClurkin, J. W. & Marrocco, R. T. Visual cortical input alters spatial tuning in monkey lateral geniculate nucleus cells. J. Physiol. 348, 135–152 (1984)

    CAS  Article  Google Scholar 

  42. 42

    Murphy, P. C., Duckett, S. G. & Sillito, A. M. Feedback connections to the lateral geniculate nucleus and cortical response properties. Science 286, 1552–1554 (1999)

    CAS  Article  Google Scholar 

  43. 43

    Casagrande, V. A. & Kaas, J. H. The Afferent, Iintrinsic and Efferent Connections of Primary Visual Cortex in Primates (eds Peters, A. & Rockland, P. ) (Plenum, 1994)

    Google Scholar 

  44. 44

    Grubb, M. S. & Thompson, I. D. Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus. J. Neurophysiol. 90, 3594–3607 (2003)

    Article  Google Scholar 

  45. 45

    Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997)

    CAS  Article  Google Scholar 

  46. 46

    Fee, M. S., Mitra, P. P. & Kleinfeld, D. Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability. J. Neurosci. Methods 69, 175–188 (1996)

    CAS  Article  Google Scholar 

  47. 47

    Kerlin, A. M., Andermann, M. L., Berezovskii, V. K. & Reid, R. C. Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67, 858–871 (2010)

    CAS  Article  Google Scholar 

  48. 48

    Ringach, D. L., Shapley, R. M. & Hawken, M. J. Orientation selectivity in macaque V1: diversity and laminar dependence. J. Neurosci. 22, 5639–5651 (2002)

    CAS  Article  Google Scholar 

  49. 49

    Bortone, D. & Polleux, F. KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron 62, 53–71 (2009)

    CAS  Article  Google Scholar 

  50. 50

    Bagnall, M. W., Hull, C., Bushong, E. A., Ellisman, M. H. & Scanziani, M. Multiple clusters of release sites formed by individual thalamic afferents onto cortical interneurons ensure reliable transmission. Neuron 71, 180–194 (2011)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Carandini, J. Isaacson and the members of the Scanziani and Isaacson laboratories for helpful discussions of this project, to J. Isaacson, R. Malinow and T. Komiyama for providing feedback on the manuscript, to P. Abelkop for histological help and neonatal viral injections, to J. Evora for mouse colony support and genotyping, to B. Atallah for sharing the technique for silencing the cortex by photostimulation of parvalbumin neurons and for help with the in vivo recording setup and to W. Bruns for help coding analysis software. We thank the UCSD Neuroscience Microscopy Facility (P30 NS047101) for the use of their imaging equipment. S.R.O. and H.A. were supported by postdoctoral fellowships from the Helen Hay Whitney Foundation. D.S.B was supported by a UCSD Neurobiology Training Grant (NINDS: 5T32NS007220-28). M.S. is an investigator of the Howard Hughes Medical Institute. This work was also supported National Institutes of Health grant RO1 NS069010 and by the Gatsby Charitable Foundation.

Author information

Affiliations

Authors

Contributions

H.A. performed the initial physiological characterization of the NTSR1-Cre expression system with optogenetic tools. H.A. also developed the in vivo awake recording preparation on the treadmill. S.R.O. performed all in vivo recordings. D.S.B. performed all in vitro recordings and anatomical reconstructions. S.R.O. and M.S. designed the study. M.S. wrote the paper.

Corresponding authors

Correspondence to Shawn R. Olsen or Massimo Scanziani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-10 with legends. (PDF 19395 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Olsen, S., Bortone, D., Adesnik, H. et al. Gain control by layer six in cortical circuits of vision. Nature 483, 47–52 (2012). https://doi.org/10.1038/nature10835

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing