Structural basis of highly conserved ribosome recycling in eukaryotes and archaea


Ribosome-driven protein biosynthesis is comprised of four phases: initiation, elongation, termination and recycling. In bacteria, ribosome recycling requires ribosome recycling factor and elongation factor G, and several structures of bacterial recycling complexes have been determined. In the eukaryotic and archaeal kingdoms, however, recycling involves the ABC-type ATPase ABCE1 and little is known about its structural basis. Here we present cryo-electron microscopy reconstructions of eukaryotic and archaeal ribosome recycling complexes containing ABCE1 and the termination factor paralogue Pelota. These structures reveal the overall binding mode of ABCE1 to be similar to canonical translation factors. Moreover, the iron–sulphur cluster domain of ABCE1 interacts with and stabilizes Pelota in a conformation that reaches towards the peptidyl transferase centre, thus explaining how ABCE1 may stimulate peptide-release activity of canonical termination factors. Using the mechanochemical properties of ABCE1, a conserved mechanism in archaea and eukaryotes is suggested that couples translation termination to recycling, and eventually to re-initiation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The ribosome-bound Pelota–ABCE1 complex.
Figure 2: Interaction of Pelota and ABCE1 with the ribosome.
Figure 3: Domain movements in Pelota and eRF1.
Figure 4: Mechanochemical activity of ABCE1 on the ribosome.
Figure 5: Scheme of archaeal and eukaryotic ribosome recycling bridging termination with initiation.

Accession codes

Primary accessions

Protein Data Bank


  1. 1

    Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999)

    CAS  Article  Google Scholar 

  2. 2

    Coelho, C. M. et al. Growth and cell survival are unevenly impaired in pixie mutant wing discs. Development 132, 5411–5424 (2005)

    CAS  Article  Google Scholar 

  3. 3

    Estevez, A. M., Haile, S., Steinbuchel, M., Quijada, L. & Clayton, C. Effects of depletion and overexpression of the Trypanosoma brucei ribonuclease L inhibitor homologue. Mol. Biochem. Parasitol. 133, 137–141 (2004)

    CAS  Article  Google Scholar 

  4. 4

    Pisarev, A. V. et al. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol. Cell 37, 196–210 (2010)

    CAS  Article  Google Scholar 

  5. 5

    Pisareva, V. P., Skabkin, M. A., Hellen, C. U., Pestova, T. V. & Pisarev, A. V. Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. EMBO J. 30, 1804–1817 (2011)

    CAS  Article  Google Scholar 

  6. 6

    Karcher, A., Schele, A. & Hopfner, K.-P. X-ray structure of the complete ABC enzyme ABCE1 from Pyrococcus abyssi. J. Biol. Chem. 283, 7962–7971 (2008)

    CAS  Article  Google Scholar 

  7. 7

    Karcher, A., Buttner, K., Martens, B., Jansen, R. P. & Hopfner, K. P. X-ray structure of RLI, an essential twin cassette ABC ATPase involved in ribosome biogenesis and HIV capsid assembly. Structure 13, 649–659 (2005)

    CAS  Article  Google Scholar 

  8. 8

    Barthelme, D. et al. Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin-ATPase ABCE1. Proc. Natl. Acad. Sci. USA 108, 3228–3233 (2011)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Barthelme, D. et al. Structural organization of essential iron-sulfur clusters in the evolutionarily highly conserved ATP-binding cassette protein ABCE1. J. Biol. Chem. 282, 14598–14607 (2007)

    CAS  Article  Google Scholar 

  10. 10

    Dong, J. et al. The essential ATP-binding cassette protein RLI1 functions in translation by promoting preinitiation complex assembly. J. Biol. Chem. 279, 42157–42168 (2004)

    CAS  Article  Google Scholar 

  11. 11

    Andersen, D. & Leevers, S. The essential Drosophila ATP-binding cassette domain protein, Pixie, binds the 40S ribosome in an ATP-dependent manner and is required for translation initiation. J. Biol. Chem. 282, 14752–14760 (2007)

    CAS  Article  Google Scholar 

  12. 12

    Shoemaker, C. J. & Green, R. Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast. Proc. Natl Acad. Sci. USA 108, E1392–E1398 (2011)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Khoshnevis, S. et al. The iron–sulphur protein RNase L inhibitor functions in translation termination. EMBO Rep. 11, 214–219 (2010)

    CAS  Article  Google Scholar 

  14. 14

    Doma, M. & Parker, R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440, 561–564 (2006)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Atkinson, G., Baldauf, S. & Hauryliuk, V. Evolution of nonstop, no-go and nonsense-mediated mRNA decay and their termination factor-derived components. BMC Evol. Biol. 8, 290 (2008)

    Article  Google Scholar 

  16. 16

    Lee, H. H. et al. Structural and functional insights into Dom34, a key component of no-go mRNA decay. Mol. Cell 27, 938–950 (2007)

    CAS  Article  Google Scholar 

  17. 17

    Frischmeyer, P. et al. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295, 2258–2261 (2002)

    ADS  CAS  Article  Google Scholar 

  18. 18

    van Hoof, A., Frischmeyer, P. A., Dietz, H. C. & Parker, R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295, 2262–2264 (2002)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Becker, T. et al. Structure of the no-go mRNA decay complex Dom34–Hbs1 bound to a stalled 80S ribosome. Nature Struct. Mol. Biol. 18, 715–720 (2011)

    CAS  Article  Google Scholar 

  20. 20

    Shoemaker, C. J., Eyler, D. E. & Green, R. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science 330, 369–372 (2010)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Hosoda, N. et al. Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation. J. Biol. Chem. 278, 38287–38291 (2003)

    CAS  Article  Google Scholar 

  22. 22

    Endoh, T., Kanai, T. & Imanaka, T. A highly productive system for cell-free protein synthesis using a lysate of the hyperthermophilic archaeon, Thermococcus kodakaraensis. Appl. Microbiol. Biotechnol. 74, 1153–1161 (2007)

    CAS  Article  Google Scholar 

  23. 23

    Rabl, J., Leibundgut, M., Ataide, S. F., Haag, A. & Ban, N. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331, 730–736 (2011)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Armache, J. P. et al. Localization of eukaryote-specific ribosomal proteins in a 5.5-Å cryo-EM map of the 80S eukaryotic ribosome. Proc. Natl Acad. Sci. USA 107, 19754–19759 (2010)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Armache, J. P. et al. Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-Å resolution. Proc. Natl Acad. Sci. USA 107, 19748–19753 (2010)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Schmeing, T. M. et al. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326, 688–694 (2009)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Gao, Y. G. et al. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326, 694–699 (2009)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Taylor, D. J. et al. Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J. 26, 2421–2431 (2007)

    CAS  Article  Google Scholar 

  29. 29

    Spahn, C. M. et al. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 23, 1008–1019 (2004)

    CAS  Article  Google Scholar 

  30. 30

    Villa, E. et al. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc. Natl Acad. Sci. USA 106, 1063–1068 (2009)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Connell, S. R. et al. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol. Cell 25, 751–764 (2007)

    CAS  Article  Google Scholar 

  32. 32

    Kobayashi, K. et al. Structural basis for mRNA surveillance by archaeal Pelota and GTP-bound EF1α complex. Proc. Natl Acad. Sci. USA 107, 17575–17579 (2010)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Frolova, L. et al. Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA 5, 1014–1020 (1999)

    CAS  Article  Google Scholar 

  34. 34

    Song, H. et al. The crystal structure of human eukaryotic release factor eRF1—mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100, 311–321 (2000)

    CAS  Article  Google Scholar 

  35. 35

    Hopfner, K. P. & Tainer, J. A. Rad50/SMC proteins and ABC transporters: unifying concepts from high-resolution structures. Curr. Opin. Struct. Biol. 13, 249–255 (2003)

    CAS  Article  Google Scholar 

  36. 36

    Smith, P. C. et al. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell 10, 139–149 (2002)

    CAS  Article  Google Scholar 

  37. 37

    Locher, K. P. Structure and mechanism of ATP-binding cassette transporters. Phil. Trans. R. Soc. Lond. B 364, 239–245 (2009)

    CAS  Article  Google Scholar 

  38. 38

    Pisarev, A. V., Hellen, C. U. & Pestova, T. V. Recycling of eukaryotic posttermination ribosomal complexes. Cell 131, 286–299 (2007)

    CAS  Article  Google Scholar 

  39. 39

    Kispal, G. et al. Biogenesis of cytosolic ribosomes requires the essential iron–sulphur protein Rli1p and mitochondria. EMBO J. 24, 589–598 (2005)

    CAS  Article  Google Scholar 

  40. 40

    Yarunin, A. et al. Functional link between ribosome formation and biogenesis of iron–sulfur proteins. EMBO J. 24, 580–588 (2005)

    CAS  Article  Google Scholar 

  41. 41

    Pavlov, M. Y., Antoun, A., Lovmar, M. & Ehrenberg, M. Complementary roles of initiation factor 1 and ribosome recycling factor in 70S ribosome splitting. EMBO J. 27, 1706–1717 (2008)

    CAS  Article  Google Scholar 

  42. 42

    Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001)

    CAS  Article  Google Scholar 

  43. 43

    Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996)

    CAS  Article  Google Scholar 

  44. 44

    Soding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005)

    Article  Google Scholar 

  45. 45

    Eswar, N., Eramian, D., Webb, B., Shen, M. Y. & Sali, A. Protein structure modeling with MODELLER. Methods Mol. Biol. 426, 145–159 (2008)

    CAS  Article  Google Scholar 

  46. 46

    Endoh, T. et al. Cell-free protein synthesis at high temperatures using the lysate of a hyperthermophile. J. Biotechnol. 126, 186–195 (2006)

    CAS  Article  Google Scholar 

  47. 47

    Endoh, T., Kanai, T. & Imanaka, T. Effective approaches for the production of heterologous proteins using the Thermococcus kodakaraensis-based translation system. J. Biotechnol. 133, 177–182 (2008)

    CAS  Article  Google Scholar 

  48. 48

    Graille, M., Chaillet, M. & van Tilbeurgh, H. Structure of yeast Dom34: a protein related to translation termination factor eRF1 and involved in no-go decay. J. Biol. Chem. 283, 7145–7154 (2008)

    CAS  Article  Google Scholar 

  49. 49

    Lee, H. H. et al. Structural and functional insights into Dom34, a key component of no-go mRNA decay. Mol. Cell 27, 938–950 (2007)

    CAS  Article  Google Scholar 

  50. 50

    Chen, J. Z. & Grigorieff, N. SIGNATURE: a single-particle selection system for molecular electron microscopy. J. Struct. Biol. 157, 168–173 (2007)

    CAS  Article  Google Scholar 

  51. 51

    Becker, T. et al. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326, 1369–1373 (2009)

    ADS  CAS  Article  Google Scholar 

  52. 52

    Chen, L. et al. Structure of the Dom34–Hbs1 complex and implications for no-go decay. Nature Struct. Mol. Biol. 17, 1233–1240 (2010)

    CAS  Article  Google Scholar 

  53. 53

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  54. 54

    Pettersen, E. F. et al. UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    CAS  Article  Google Scholar 

  55. 55

    Schröder, G. F., Brunger, A. T. & Levitt, M. Combining efficient conformational sampling with a deformable elastic network model facilitates structure refinement at low resolution. Structure 15, 1630–1641 (2007)

    Article  Google Scholar 

  56. 56

    Trabuco, L. G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008)

    CAS  Article  Google Scholar 

  57. 57

    Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    CAS  Article  Google Scholar 

Download references


We thank A. Schele and A. Gilmozzi for technical assistance, and D. Wilson for critical discussions. This work was supported by grants from the Deutsche Forschungsgemeinschaft, SFB594 (to R.B.), SFB646 (to T.B., R.B. and K.-P.H.), National Institutes of Health U19 AI083025 (to K.-P.H.) and by the Fonds der chemischen Industrie (to S.F.).

Author information




T.B. and R.B. designed the study, T.B. processed the yeast SL–RNC–Dom34–Rli1 complex and interpreted the cryo-EM structures, S.F. purified archaeal proteins and reconstituted the archaeal 70S–aPelota–aABCE1 sample, processed all archaeal data sets and interpreted the cryo-EM structures, S.W. developed an automated workflow for data processing from the Titan Krios microscope, C.J.S. purified yeast Rli1p, A.M.A. built the archaeal 70S ribosome rRNA model, J.-P.A. built the archaeal 70S ribosome protein models, H.S. reconstituted the SL–RNC–Dom34–Rli1 sample, C.U. prepared cryo-EM grids and assisted in data collection, O.B. optimized and performed cryo-EM data collection, I.D. implemented software for automated data collection on the Titan Krios microscope, A.K. purified archaeal ABCE1, M.T. provided P. furiosus and Thermococcus kodakaraensis cells, T.B., S.F., K.-P.H., R.G. and R.B. interpreted results.

Corresponding authors

Correspondence to Thomas Becker or Roland Beckmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

EM density maps are deposited in the 3D-EM database (EMD-2008 and EMD-2010 for yeast maps, EMD-2009 for the archaeal map) and the coordinates for EM-based models are deposited in the Protein Data Bank (3J15 and 3J16).

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-5 with legends, Supplementary Tables 1-2, legends for Supplementary Movies 1-3 and additional references. (PDF 1939 kb)

Supplementary Movie 1

This movie shows the domain movement of Pelota central domain stabilized by ABCE1 – yeast (see Supplementary Information file for full legend). (MOV 14182 kb)

Supplementary Movie 2

This movie shows the domain movement of Pelota central domain stabilized by ABCE1 - archaea (see Supplementary Information file for full legend). (MOV 10126 kb)

Supplementary Movie 3

This move shows the conformational transition of ABCE1 (see Supplementary Information file for full legend). (MOV 14925 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Becker, T., Franckenberg, S., Wickles, S. et al. Structural basis of highly conserved ribosome recycling in eukaryotes and archaea. Nature 482, 501–506 (2012).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing