Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab

Article metrics

Abstract

The origin of the Steens–Columbia River (SCR) flood basalts, which is presumed to be the onset of Yellowstone volcanism, has remained controversial, with the proposed conceptual models involving either a mantle plume1,2,3,4,5 or back-arc processes6,7,8. Recent tomographic inversions based on the USArray data reveal unprecedented detail of upper-mantle structures of the western USA9 and tightly constrain geodynamic models simulating Farallon subduction, which has been proposed to influence the Yellowstone volcanism5,6. Here we show that the best-fitting geodynamic model10 depicts an episode of slab tearing about 17 million years ago under eastern Oregon, where an associated sub-slab asthenospheric upwelling thermally erodes the Farallon slab, leading to formation of a slab gap at shallow depth. Driven by a gradient of dynamic pressure, the tear ruptured quickly north and south and within about two million years covering a distance of around 900 kilometres along all of eastern Oregon and northern Nevada. This tear would be consistent with the occurrence of major volcanic dikes during the SCR–Northern Nevada Rift flood basalt event both in space and time. The model predicts a petrogenetic sequence for the flood basalt with sources of melt starting from the base of the slab, at first remelting oceanic lithosphere and then evolving upwards, ending with remelting of oceanic crust. Such a progression helps to reconcile the existing controversies on the interpretation of SCR geochemistry and the involvement of the putative Yellowstone plume. Our study suggests a new mechanism for the formation of large igneous provinces.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Development of the Farallon slab rupture beneath the western USA during the mid-Miocene epoch.
Figure 2: Mantle flow associated with the slab tearing at latitude 44 °N from 18 to 14 Myr ago.
Figure 3: Three-dimensional view of the tearing slab.

References

  1. 1

    Brandon, A. D. & Goles, G. G. A Miocene subcontinental plume in the Pacific Northwest: geochemical evidence. Earth Planet. Sci. Lett. 88, 273–283 (1988)

  2. 2

    Pierce, K. L. & Morgan, L. A. in Regional Geology of Eastern Idaho and Western Wyoming (eds Link, P. K. et al.) 179, 1–53 (Geological Society of America Memoir, 1992)

  3. 3

    Hooper, P. R., Camp, V. E., Reidel, S. P. & Ross, M. E. The origin of the Columbia River flood basalt province: plume versus nonplume models. GSA Spec. Pap. 430, 635–668 (2007)

  4. 4

    Camp, V. E. & Ross, M. E. Mantle dynamics and genesis of mafic magmatism in the intermontane Pacific Northwest. J. Geophys. Res. 109, B08204 (2004)

  5. 5

    Smith, R. B. et al. Geodynamics of the Yellowstone hotspot and mantle plume: seismic and GPS imaging, kinematics, and mantle flow. J. Volcanol. Geotherm. Res. 188, 26–56 (2009)

  6. 6

    Carlson, R. W. & Hart, W. K. Crustal genesis on the Oregon plateau. J. Geophys. Res. 92, 6191–6206 (1987)

  7. 7

    Christiansen, R. L., Foulger, G. R. & Evans, J. R. Upper mantle origin of the Yellowstone hot spot. Geol. Soc. Am. Bull. 114, 1245–1256 (2002)

  8. 8

    Hales, T. C., Abt, D. L., Humphreys, E. D. & Roering, J. J. Delamination origin for the Columbia River flood basalts and Wallowa Mountain uplift in NE Oregon, USA. Nature 438, 842–845 (2005)

  9. 9

    Sigloch, K. Mantle provinces under North America from multifrequency P wave tomography. Geochem. Geophys. Geosyst. 12, Q02W08 (2011)

  10. 10

    Liu, L. & Stegman, D. R. Segmentation of the Farallon slab. Earth Planet. Sci. Lett. 311, 1–10 (2011)

  11. 11

    Bunge, H.-P. & Grand, S. P. Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab. Nature 405, 337–340 (2000)

  12. 12

    Liu, L., Spasojević, S. & Gurnis, M. Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous. Science 322, 934–938 (2008)

  13. 13

    Atwater, T. & Stock, J. in Integrated Earth and Environmental Evolution of the Southwestern United States (eds Ernst, W. G. & Nelson, C. A. ) 393–420 (Bellwether Publishing, 1998)

  14. 14

    Schellart, W. P., Stegman, D. R., Farrington, R. J., Freeman, J. & Moresi, L. Cenozoic tectonics of western North America controlled by evolving width of Farallon slab. Science 329, 316–319 (2010)

  15. 15

    Wortel, M. J. R. & Spakman, W. Subduction and slab detachment in the Mediterranean–Carpathian region. Science 290, 1910–1917 (2000)

  16. 16

    McQuarrie, N. & Wernicke, B. An animated tectonic reconstruction of southwestern North America since 36 Ma. Geosphere 1, 147–172 (2005)

  17. 17

    Priest, G. R. Volcanic and tectonic evolution of the cascade volcanic arc, central Oregon. J. Geophys. Res. 95, 19583–19599 (1990)

  18. 18

    Hirth, G. & Kohlstedt, D. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996)

  19. 19

    Camp, V. & Hanan, B. A plume-triggered delamination origin for the Columbia River basalt group. Geosphere 4, 480–495 (2008)

  20. 20

    Carlson, R. W. Isotopic constraints on Columbia River flood basalt genesis and the nature of the subcontinental mantle. Geochim. Cosmochim. Acta 48, 2357–2372 (1984)

  21. 21

    Dodson, A., Kennedy, B. M. & DePaolo, D. J. Helium and neon isotopes in the Imnaha Basalt, Columbia River basalt group: evidence for a Yellowstone plume source. Earth Planet. Sci. Lett. 150, 443–451 (1997)

  22. 22

    Takahahshi, E., Nakajima, K. & Wright, T. L. Origin of the Columbia River basalts: melting model of a heterogeneous mantle plume head. Earth Planet. Sci. Lett. 162, 63–80 (1998)

  23. 23

    Duncan, R. A. A captured island chain in the coast range of Oregon and Washington. J. Geophys. Res. 87, 10827–10837 (1982)

  24. 24

    Beck, M. E. Has the Washington-Oregon coast range moved northward? Geology 12, 737–740 (1984)

  25. 25

    Geist, D. & Richards, M. Origin of the Columbia Plateau and Snake River plain: deflection of the Yellowstone plume. Geology 21, 789–792 (1993)

  26. 26

    Humphreys, E. D., Dueker, K. G., Schutt, D. L. & Smith R. B Beneath Yellowstone: evaluating plume and nonplume models using teleseismic images of the upper mantle. GSA Today 10, 1–6 (2000)

  27. 27

    Glen, J. & Ponce, D. Large-scale fractures related to inception of the Yellowstone hotspot. Geology 30, 647–650 (2002)

  28. 28

    Zhong, S., Zuber, M. T., Moresi, L. N. & Gurnis, M. The role of temperature dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res. 105, 11063–11082 (2000)

  29. 29

    Humphreys, E. Post-Laramide removal of the Farallon slab, western United States. Geology 23, 987–990 (1995)

  30. 30

    Sigloch, K., McQuarrie, N. & Nolet, G. Two-stage subduction history under North Amercia inferred from multiple-frequency tomography. Nature Geosci. 1, 458–462 (2008)

  31. 31

    Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 9, Q04006 (2008a)

  32. 32

    Schmeling, H. et al. A benchmark comparison of spontaneous subduction models—towards a free surface. Phys. Earth Planet. Inter. 171, 198–223 (2008)

  33. 33

    Schmandt, B. & Humphreys, E. Complex subduction and small-scale convection revealed by body-wave tomography of the western United States upper mantle. Earth Planet. Sci. Lett. 297, 435–445 (2010)

Download references

Acknowledgements

We thank R. Carlson and D. Blackman for discussions. Computational resources were provided by XSEDE project EAR100021. L.L. was funded by the John Miles Fellowship and the Cecil and Ida Green Foundation. D.R.S. was supported in part by the G. Unger Vetlesen Foundation.

Author information

L.L. designed and performed the numerical models. Both authors contributed equally to idea development and result interpretation.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-3 with legends and additional references. (PDF 581 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, L., Stegman, D. Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab. Nature 482, 386–389 (2012) doi:10.1038/nature10749

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.