Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket


AcrB and its homologues are the principal multidrug transporters in Gram-negative bacteria1,2,3,4,5,6 and are important in antibiotic drug tolerance7,8. AcrB is a homotrimer that acts as a tripartite complex9,10 with the outer membrane channel TolC11,12 and the membrane fusion protein AcrA13,14. Minocycline and doxorubicin have been shown to bind to the phenylalanine cluster region of the binding monomer15. Here we report the crystal structures of AcrB bound to the high-molecular-mass drugs rifampicin and erythromycin. These drugs bind to the access monomer, and the binding sites are located in the proximal multisite binding pocket, which is separated from the phenylalanine cluster region (distal pocket) by the Phe-617 loop. Our structures indicate that there are two discrete multisite binding pockets along the intramolecular channel. High-molecular-mass drugs first bind to the proximal pocket in the access state and are then forced into the distal pocket in the binding state by a peristaltic mechanism involving subdomain movements that include a shift of the Phe-617 loop. By contrast, low-molecular-mass drugs, such as minocycline and doxorubicin, travel through the proximal pocket without specific binding and immediately bind to the distal pocket. The presence of two discrete, high-volume multisite binding pockets contributes to the remarkably broad substrate recognition of AcrB.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Crystal structure of the rifampicin-bound AcrB trimer.
Figure 2: Crystal structure of the erythromycin-binding site of AcrB with a bound erythromycin molecule.
Figure 3: Structure of the AcrB trimer with simultaneously bound rifampicin and minocycline.
Figure 4: Effect of site-directed mutagenesis in the two binding pockets and putative intramolecular channels.
Figure 5: Crystal structure of the rifampicin–minocycline-bound AcrB trimer.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The coordinates for unliganded AcrB and the AcrB–rifampicin, AcrB–erythromycin and AcrB–rifampicin–minocycline complexes have been deposited in the Protein Data Bank under accession numbers 3AOA, 3AOB, 3AOC, and 3AOD, respectively.


  1. 1

    Ma, D., Cook, D. N., Hearst, J. E. & Nikaido, H. Efflux pumps and drug resistance in Gram-negative bacteria. Trends Microbiol. 2, 489–493 (1994)

    CAS  Article  Google Scholar 

  2. 2

    Okusu, H., Ma, D. & Nikaido, H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J. Bacteriol. 178, 306–308 (1996)

    CAS  Article  Google Scholar 

  3. 3

    Paulsen, I. T., Nguyen, L., Sliwinski, M. K., Rabus, R. & Saier, M. H., Jr Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J. Mol. Biol. 301, 75–100 (2000)

    CAS  Article  Google Scholar 

  4. 4

    Nishino, K. & Yamaguchi, A. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J. Bacteriol. 183, 5803–5812 (2001)

    CAS  Article  Google Scholar 

  5. 5

    Poole, K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J. Mol. Microbiol. Biotechnol. 3, 255–264 (2001)

    CAS  PubMed  Google Scholar 

  6. 6

    Nishino, K., Latifi, T. & Groisman, E. A. Virulence and drug resistance roles of multidrug efflux systems of Salmonera enterica serovar Typhimurium. Mol. Microbiol. 59, 126–141 (2006)

    CAS  Article  Google Scholar 

  7. 7

    Poole, K., Krebes, K., McNally, C. & Neshat, S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J. Bacteriol. 175, 7363–7372 (1993)

    CAS  Article  Google Scholar 

  8. 8

    Sulavik, M. C. et al. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob. Agents Chemother. 45, 1126–1136 (2001)

    CAS  Article  Google Scholar 

  9. 9

    Tikhonova, E. B. & Zgurskaya, H. I. AcrA, AcrB and TolC of Escherichia coli form a stable intermembrane multidrug efflux complex. J. Biol. Chem. 279, 32116–32124 (2004)

    CAS  Article  Google Scholar 

  10. 10

    Symmons, M. F., Bokma, E., Koronakis, E., Hughes, C. & Koronakis, V. The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc. Natl Acad. Sci. USA 106, 7173–7178 (2009)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Fralick, J. A. Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J. Bacteriol. 178, 5803–5805 (1996)

    CAS  Article  Google Scholar 

  12. 12

    Koronakis, V., Sharff, A., Koronakis, E., Luisi, B. & Hughes, C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914–919 (2000)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Zgurskaya, H. I. & Nikaido, H. AcrA is a highly asymmetric protein capable of spanning the periplasm. J. Mol. Biol. 285, 409–420 (1999)

    CAS  Article  Google Scholar 

  14. 14

    Mikolosko, J., Bobyk, K., Zgurskaya, H. I. & Ghosh, P. Conformational flexibility in the multidrug efflux system protein AcrA. Structure 14, 577–587 (2006)

    CAS  Article  Google Scholar 

  15. 15

    Murakami, S., Nakashima, R., Yamashita, E., Matsumoto, T. & Yamaguchi, A. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443, 173–179 (2006)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Murakami, S., Nakashima, R., Yamashita, E. & Yamaguchi, A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593 (2002)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Yu, E. W., McDermott, G., Zgurskaya, H. I., Nikaido, H. & Koshland, D. E., Jr Structural basis of multidrug-binding capacity of the AcrB multidrug efflux pump. Science 300, 976–980 (2003)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Yu, E. W., Aires, J. R., McDermott, G. & Nikaido, H. A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study. J. Bacteriol. 187, 6804–6815 (2005)

    CAS  Article  Google Scholar 

  19. 19

    Törnroth-Horsefield, S. et al. Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist. Structure 15, 1663–1673 (2007)

    Article  Google Scholar 

  20. 20

    Drew, D. et al. The structure of the efflux pump AcrB in complex with bile acid. Mol. Membr. Biol. 25, 677–682 (2008)

    CAS  Article  Google Scholar 

  21. 21

    Pos, K. M., Schiefner, A., Seeger, M. A. & Diederichs, K. Crystallographic analysis of AcrB. FEBS Lett. 564, 333–339 (2004)

    CAS  Article  Google Scholar 

  22. 22

    Murakami, S. Multidrug efflux transporter, AcrB-the pumping mechanism. Curr. Opin. Struct. Biol. 18, 459–465 (2008)

    CAS  Article  Google Scholar 

  23. 23

    Seeger, M. A. et al. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313, 1295–1298 (2006)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Seeger, M. A. et al. Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB. Nature Struct. Mol. Biol. 15, 199–205 (2008)

    CAS  Article  Google Scholar 

  25. 25

    Sennhauser, G., Amstutz, P., Briand, C., Storchenegger, O. & Grutter, M. G. Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol. 5, e7 (2007)

    Article  Google Scholar 

  26. 26

    Sennhauser, G., Bukowska, M. A., Briand, C. & Grutter, M. G. Crystal structure of the multidrug exporter MexB from Pseudomonas aeruginosa. J. Mol. Biol. 389, 134–145 (2009)

    CAS  Article  Google Scholar 

  27. 27

    Schumacher, M. A. et al. Structural mechanisms of QacR induction and multidrug recognition. Science 294, 2158–2163 (2001)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Bohnert, J. A. et al. Site-directed mutagenesis reveals putative substrate binding residues in the Escherichia coli RND efflux pump AcrB. J. Bacteriol. 190, 8225–8229 (2008)

    CAS  Article  Google Scholar 

  29. 29

    Medek, P., Benes, P. & Sochor, J. Computation of tunnels in protein molecules using Delaunay triangulation. J. WSCG 15, 107–114 (2007)

    Google Scholar 

  30. 30

    Pos, K. M. Drug transport mechanism of the AcrB efflux pump. Biochim. Biophys. Acta 1794, 782–793 (2009)

    CAS  Article  Google Scholar 

  31. 31

    Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    CAS  Article  Google Scholar 

  32. 32

    Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997)

    CAS  Article  Google Scholar 

  33. 33

    Collaborative Computational Project. Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  34. 34

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  35. 35

    Brunger, A. T. Version 1.2 of the crystallography and NMR system. Nature Protocols 2, 2728–2733 (2007)

    CAS  Article  Google Scholar 

  36. 36

    Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    CAS  Article  Google Scholar 

  37. 37

    Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462 (1997)

    CAS  Article  Google Scholar 

  38. 38

    Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995)

    CAS  Article  Google Scholar 

Download references


We thank T. Tsukihara for advice on the crystallographic analysis. We also thank N. Kato for discussion about the organic chemistry of the drugs that were investigated in this study. Our diffraction data were collected using Osaka University’s beamline BL44XU at SPring-8, which was equipped with an MX225-HE detector (Rayonix) and was financially supported by the Academia Sinica and the National Synchrotron Radiation Research Center (Taiwan). We are also grateful to the technical staff of the Comprehensive Analysis Center of the Institute of Scientific and Industrial Research for their assistance. This work was supported by the Program for the Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation and Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information




R.N. and K.S. performed the crystallographic analysis. S.Y. and K.N. performed the molecular biological and biochemical analyses. A.Y. designed the research and wrote the manuscript.

Corresponding author

Correspondence to Akihito Yamaguchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-13 with legends and a Supplementary Discussion and additional references. (PDF 2173 kb)

Supplementary Movie 4a

The movie shows conformational change of the Phe-617 loop during functional rotation of AcrB. The movie was generated by morphing the three functional states of AcrB bound to both rifampicin and minocycline using PyMOL. The Phe-617 loop is shown in red. (MOV 3027 kb)

Supplementary Movie 7a

The movie shows movement of the amino acid side chains that interact with erythromycin during drug transport. The side chains of Phe 617, Ser 134 and Ser 135 are shown in red. The movie was generated by morphing the three functional states of the erythromycin-bound form of AcrB using PyMOL. (MOV 1873 kb)

Supplementary Movie 8

The movie shows crystal structure of AcrB simultaneously bound to rifampicin and minocycline solved at a 3.3 Å resolution. Rifampicin (magenta) in the access monomer (green) and minocycline (cyan) in the binding monomer (blue) are shown in a CPK (Corey-Pauling-Koltun) representation. (MOV 3426 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nakashima, R., Sakurai, K., Yamasaki, S. et al. Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature 480, 565–569 (2011).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing