Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline

Abstract

The building of the Andes results from the subduction of the oceanic Nazca plate underneath the South American continent1,2. However, how and why the Andes and their curvature, the Bolivian orocline, formed in the Cenozoic era (65.5 million years (Myr) ago to present), despite subduction continuing since the Mesozoic era3 (251.0–65.5 Myr ago), is still unknown. Three-dimensional numerical subduction models demonstrate that variations in slab thickness, arising from the Nazca plate’s age at the trench, produce a cordilleran morphology consistent with that observed1,2. The age-dependent sinking of the slab in the mantle drives traction towards the trench at the base of the upper plate, causing it to thicken. Thus, subducting older Nazca plate below the Central Andes can explain the locally thickened crust and higher elevations. Here we demonstrate that resultant thickening of the South American plate modifies both shear force gradients and migration rates along the trench to produce a concave margin that matches the Bolivian orocline. Additionally, the varying forcing along the margin allows stress belts to form in the upper-plate interior, explaining the widening of the Central Andes and the different tectonic styles found on their margins, the Eastern and Western Cordilleras2. The rise of the Central Andes and orocline formation are directly related to the local increase of Nazca plate age and an age distribution along the margin similar to that found today; the onset of these conditions only occurred in the Eocene epoch4. This may explain the enigmatic delay of the Andean orogeny, that is, the formation of the modern Andes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The Andes and South American subduction.
Figure 2: Subduction models with slab morphologies, vertical stresses and velocities, after 2,000 km of subduction.
Figure 3: Surface stress and pressure from the model with heterogeneities in both plates.
Figure 4: Effects of upper-plate thickening.

References

  1. 1

    Isacks, B. L. Uplift of the central Andean plateau and bending of the Bolivian orocline. J. Geophys. Res. 93, 3211–3231 (1988)

    ADS  Article  Google Scholar 

  2. 2

    Allmendinger, R. W., Jordan, T. E., Kay, S. M. & Isacks, B. L. The evolution of the Altiplano-Puna plateau of the central Andes. Annu. Rev. Earth Planet. Sci. 25, 139–174 (1997)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Mpodozis, C. & Ramos, V. A. in Geology of the Andes and its Relation to Hydrocarbon and Mineral Resources Vol. 11 (eds Ericksen, G. E., Cañas Pinochet, M. T. & Reinemud, J. A.). 59–90 (1990)

  4. 4

    Sdrolias, M. & Müller, R. D. Controls on back-arc basin formation. Geochem. Geophys. Geosyst. 7 Q04016 10.1029/2005GC001090 (2006)

    ADS  Article  Google Scholar 

  5. 5

    Arriagada, C., Roperch, P., Mpodozis, C. & Cobbold, P. Paleogene building of the Bolivian Orocline: tectonic restoration of the central Andes in 2-D map view. Tectonics 27 TC6014 10.1029/2008TC002269 (2008)

    ADS  Article  Google Scholar 

  6. 6

    Allmendinger, R. W. & Gubbels, T. Pure and simple shear plateau uplift, Altiplano-Puna, Argentina and Bolivia. Tectonophysics 259, 1–13 (1996)

    ADS  Article  Google Scholar 

  7. 7

    Gephart, J. W. Topography and subduction geometry in the central Andes: clues to the mechanics of a noncollisional orogen. J. Geophys. Res. 99 (B6). 12279–12288 (1994)

    ADS  Article  Google Scholar 

  8. 8

    Jordan, T. E. et al. Andean tectonics related to geometry of subducted Nazca plate. Geol. Soc. Am. Bull. 94, 341–361 (1983)

    ADS  Article  Google Scholar 

  9. 9

    Beck, S. L. & Zandt, G. The nature of orogenic crust in the central Andes. J. Geophys. Res. 107 (B10). 2230 10.1029/2000JB000124 (2002)

    ADS  Article  Google Scholar 

  10. 10

    Gutscher, M. A., Spakman, W., Bijwaard, H. & Engdahl, E. R. Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin. Tectonics 19, 814–833 (2000)

    ADS  Article  Google Scholar 

  11. 11

    Schellart, W. P. et al. Evolution and diversity of subduction zones controlled by slab width. Nature 446, 308–311 (2007)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Allmendinger, R. W. et al. Bending the Bolivian orocline in real time. Geology 33, 905–908 (2005)

    ADS  Article  Google Scholar 

  13. 13

    Yáñez, G. & Cembrano, J. Role of viscous plate coupling in the late Tertiary Andean tectonics. J. Geophys. Res. 109 B02407 10.1029/2003JB002494 (2004)

    ADS  Article  Google Scholar 

  14. 14

    Lamb, S. & Davis, P. Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425, 792–797 (2003)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Sobolev, S. V. & Babeyko, A. Y. What drives orogeny in the Andes? Geology 33, 617–620 (2005)

    ADS  Article  Google Scholar 

  16. 16

    Iaffaldano, G. & Bunge, H. P. Strong plate coupling along the Nazca–South America convergent margin. Geology 36, 443–446 (2008)

    ADS  Article  Google Scholar 

  17. 17

    Russo, R. M. & Silver, P. G. Cordillera formation, mantle dynamics, and the Wilson cycle. Geology 24, 511–514 (1996)

    ADS  Article  Google Scholar 

  18. 18

    Wdowinski, S., O'Connell, R. J. & England, P. A continuum model of continental deformation above subduction zones: application to the Andes and the Aegean. J. Geophys. Res. 94 (B8). 10331–10346 (1989)

    ADS  Article  Google Scholar 

  19. 19

    Husson, L. & Ricard, Y. Stress balance above subduction: application to the Andes. Earth Planet. Sci. Lett. 222, 1037–1050 (2004)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Pardo-Casas, F. & Molnar, P. Relative motions of the Nazca (Farallon) and South American plates since late Cretaceous time. Tectonics 6, 233–248 (1987)

    ADS  Article  Google Scholar 

  21. 21

    Montgomery, D. R., Balco, G. & Willett, S. D. Climate, tectonics, and the morphology of the Andes. Geology 29, 579–582 (2001)

    ADS  Article  Google Scholar 

  22. 22

    Capitanio, F. A., Stegman, D. R., Moresi, L. & Sharples, W. Upper plate controls on deep subduction, trench migrations and deformations at convergent margins. Tectonophysics 483, 80–92 (2010)

    ADS  Article  Google Scholar 

  23. 23

    van Hunen, J., van der Berg, A. P. & Vlaar, N. J. On the role of subducting oceanic plateaus in the development of shallow flat subduction. Tectonophysics 352, 317–333 (2002)

    ADS  Article  Google Scholar 

  24. 24

    Morra, G., Regenauer-Lieb, K. & Giardini, D. On the curvature of oceanic arcs. Geology 34, 877–880 (2006)

    ADS  Article  Google Scholar 

  25. 25

    Kley, J. & Monaldi, C. R. Tectonic shortening and crustal thickness in the Central Andes: how good is the correlation? Geology 26, 723–726 (1998)

    ADS  Article  Google Scholar 

  26. 26

    Gerbault, M., Martinod, J. & Hérail, G. Possible orogeny-parallel lower crustal flow and thickening in the Central Andes. Tectonophysics 399, 59–72 (2005)

    ADS  Article  Google Scholar 

  27. 27

    Elger, K., Oncken, O. & Glodny, J. Plateau-style accumulation of deformation: Southern Altiplano. Tectonics 24 TC4020 10.1029/2004TC001675 (2005)

    ADS  Article  Google Scholar 

  28. 28

    Garzione, C. N., Molnar, P., Libarkin, J. C. & MacFadden, B. J. Rapid late Miocene rise of the Bolivian Altiplano: evidence for removal of mantle lithosphere. Earth Planet. Sci. Lett. 241, 543–556 (2006)

    ADS  CAS  Article  Google Scholar 

  29. 29

    DeMets, C., Gordon, R. G. & Argus, D. F. Geologically current plate motions. Geophys. J. Int. 181, 1–80 (2010)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Faccenda, R. F. Weinberg and J. P. Brun for discussions. F.A.C. was supported by the Australian Research Council's Discovery Projects DP0987374. D.R.S. was supported in part by the G. Unger Vetlesen Foundation.

Author information

Affiliations

Authors

Contributions

F.A.C. designed and performed the numerical modelling. F.A.C. and S.Z. processed the models’ output and the data. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to F. A. Capitanio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Methods and Data, Supplementary Figures 1-9 with legends, Supplementary Tables 1-2 and additional references. (PDF 19390 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Capitanio, F., Faccenna, C., Zlotnik, S. et al. Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline. Nature 480, 83–86 (2011). https://doi.org/10.1038/nature10596

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing