A long-lived lunar dynamo driven by continuous mechanical stirring


Lunar rocks contain a record of an ancient magnetic field that seems to have persisted for more than 400 million years1,2 and which has been attributed to a lunar dynamo3,4. Models of conventional dynamos driven by thermal or compositional convection have had difficulty reproducing the existence and apparently long duration of the lunar dynamo5,6,7. Here we investigate an alternative mechanism of dynamo generation: continuous mechanical stirring arising from the differential motion, due to Earth-driven precession of the lunar spin axis, between the solid silicate mantle and the liquid core beneath8,9. We show that the fluid motions and the power required to drive a dynamo operating continuously for more than one billion years and generating a magnetic field that had an intensity of more than one microtesla 4.2 billion years ago3 are readily obtained by mechanical stirring. The magnetic field is predicted to decrease with time and to shut off naturally when the Moon recedes far enough from Earth that the dissipated power is insufficient to drive a dynamo; in our nominal model, this occurred at about 48 Earth radii (2.7 billion years ago). Thus, lunar palaeomagnetic measurements may be able to constrain the poorly known early orbital evolution of the Moon. This mechanism may also be applicable to dynamos in other bodies, such as large asteroids.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The total power deposited into the lunar core.
Figure 2: The lunar surface magnetic palaeointensity predicted by our models.


  1. 1

    Cisowski, S. M., Collinson, D. W., Runcorn, S. K. & Stephenson, A. A review of lunar paleointensity data and implications for the origin of lunar magnetism. J. Geophys. Res. 88, A691–A704 (1983)

    Article  Google Scholar 

  2. 2

    Wieczorek, M. A. et al. in New Views of the Moon (eds Jolliff, B. L., Wieczorek, M. A., Shearer, C. K. & Neal, C. R.) 60, 221–364 (Mineralogical Soceitry of America, 2006)

  3. 3

    Garrick-Bethell, I., Weiss, B. P., Shuster, D. L. & Buz, J. Early lunar magnetism. Science 323, 356–359 (2009)

    CAS  Article  ADS  Google Scholar 

  4. 4

    Hood, L. L. Central magnetic anomalies of Nectarian-aged lunar impact basins: probable evidence for an early core dynamo. Icarus 211, 1109–1128 (2011)

    Article  ADS  Google Scholar 

  5. 5

    Stegman, D. R., Jellinek, A. M., Zatman, S. A., Baumgardner, J. R. & Richards, M. A. An early lunar core dynamo driven by thermochemical mantle convection. Nature 421, 143–146 (2003)

    CAS  Article  ADS  Google Scholar 

  6. 6

    Takahashi, F. & Tsunakawa, H. Thermal core-mantle coupling in an early lunar dynamo: implications for a global magnetic field and magnetosphere of the early Moon. Geophys. Res. Lett. 36, L24202 (2009)

    Article  ADS  Google Scholar 

  7. 7

    Konrad, W. & Spohn, T. Thermal history of the Moon: implications for an early core dynamo and post-accretional magmatism. Adv. Space Res. 19, 1511–1521 (1997)

    Article  ADS  Google Scholar 

  8. 8

    Yoder, C. F. The free librations of a dissipative Moon. Phil. Trans. R. Soc. Lond. A 303, 327–338 (1981)

    Article  ADS  Google Scholar 

  9. 9

    Williams, J. G., Boggs, D. H., Yoder, C. F., Ratcliff, J. T. & Dickey, J. O. Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106, 27933–27968 (2001)

    Article  ADS  Google Scholar 

  10. 10

    Weber, R. C., Lin, P.-Y., Garnero, E. J., Williams, Q. & Lognonné, P. Seismic detection of the lunar core. Science 331, 309–312 (2011)

    CAS  Article  ADS  Google Scholar 

  11. 11

    Hood, L. L. & Artemieva, N. A. Antipodal effects of lunar basin-forming impacts: initial 3D simulations and comparisons with observations. Icarus 193, 485–502 (2008)

    Article  ADS  Google Scholar 

  12. 12

    Lawrence, K., Johnson, C., Tauxe, L. & Gee, J. Lunar paleointensity measurements: implications for lunar magnetic evolution. Phys. Earth Planet. Inter. 168, 71–87 (2008)

    Article  ADS  Google Scholar 

  13. 13

    Nimmo, F. in Core Dynamics (ed. Olson, P.) 31–65 (Treatise on Geophysics 8, Academic, 2007)

    Google Scholar 

  14. 14

    Goldreich, P. Precession of the Moon’s core. J. Geophys. Res. 72, 3135–3137 (1967)

    Article  ADS  Google Scholar 

  15. 15

    Meyer, J. & Wisdom, J. Precession of the lunar core. Icarus 211, 921–924 (2011)

    Article  ADS  Google Scholar 

  16. 16

    Tilgner, A. Precession-driven dynamos. Phys. Fluids 17, 034104 (2005)

    MathSciNet  Article  ADS  Google Scholar 

  17. 17

    Peale, S. J. Generalized Cassini’s laws. Astron. J. 74, 483–489 (1968)

    Article  ADS  Google Scholar 

  18. 18

    Ward, W. R. Past orientation of the lunar spin axis. Science 189, 377–379 (1975)

    CAS  Article  ADS  Google Scholar 

  19. 19

    Williams, G. E. Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit. Rev. Geophys. 38, 37–59 (2000)

    Article  ADS  Google Scholar 

  20. 20

    Webb, D. J. Tides and the evolution of the Earth-Moon system. Geophys. J. R. Astron. Soc. 70, 261–271 (1982)

    Article  ADS  Google Scholar 

  21. 21

    Cébron, D., Maubert, P. & Le Bars, M. Tidal instability in a rotating and differentially heated ellipsoidal shell. Geophys. J. Int. 182, 1311–1318 (2010)

    Article  ADS  Google Scholar 

  22. 22

    Roberts, P. H., Glatzmaier, G. A. & Clune, T. L. Numerical simulation of a spherical dynamo excited by a flow of von Karman type. Geophys. Astrophys. Fluid Dyn. 104, 207–220 (2010)

    MathSciNet  Article  ADS  Google Scholar 

  23. 23

    Christensen, U. R., Holzwarth, V. & Reiners, A. Energy flux determines magnetic field strength of planets and stars. Nature 457, 167–169 (2009)

    CAS  Article  ADS  Google Scholar 

  24. 24

    Ong, L. & Melosh, H. J. in 41st Lunar Planet. Sci. Conf. abstr. 1363, 〈http://www.lpi.usra.edu/meetings/lpsc2010/pdf/1363.pdf〉 (Lunar and Planetary Institute, 2010)

    Google Scholar 

  25. 25

    Le Bars, M., Wieczorek, M. A., Karatekin, Ö., Cébron, D. & Laneuville, M. An impact-driven dynamo for the early Moon. Naturehttp://dx.doi.org/10.1038/nature10565〉 (this issue)

  26. 26

    Ooe, M., Sasaki, H. & Kinoshita, H. in Variations in Earth Rotation (eds McCarthy, D. D. & Carter, W. E. ) 51–57 (American Geophysical Union, 1990)

    Google Scholar 

  27. 27

    Walker, J. C. G. et al. in Earth’s Earliest Biosphere (ed. Schopf, J. ) 260–290 (Princeton Univ. Press, 1983)

  28. 28

    Zahnle, K. et al. Emergence of a habitable planet. Space Sci. Rev. 129, 35–78 (2007)

    CAS  Article  ADS  Google Scholar 

  29. 29

    Weiss, B. P. et al. Magnetism on the angrite parent body and the early differentiation of planetesimals. Science 322, 713–716 (2008)

    CAS  Article  ADS  Google Scholar 

  30. 30

    Bills, B. G. & Nimmo, F. Forced obliquities and moments of inertia of Ceres and Vesta. Icarus 213, 496–509 (2011)

    Article  ADS  Google Scholar 

  31. 31

    Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001)

    CAS  Article  ADS  Google Scholar 

Download references


C.A.D. would like to thank B. P. Weiss and I. Garrick-Bethell for discussions.

Author information




D.J.S. thought of the initial idea. C.A.D. performed the calculations. F.N. investigated the conditions under which turbulence occurs. All authors discussed the results and implications and commented on the manuscript.

Corresponding author

Correspondence to C. A. Dwyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Discussions 1-3, Supplementary Figures 1-3 with legends, Supplementary Tables 1-2 and additional refernces. (PDF 419 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dwyer, C., Stevenson, D. & Nimmo, F. A long-lived lunar dynamo driven by continuous mechanical stirring. Nature 479, 212–214 (2011). https://doi.org/10.1038/nature10564

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing