Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Motor antagonism exposed by spatial segregation and timing of neurogenesis

Abstract

Walking is a key motor behaviour of limbed animals, executed by contraction of functionally antagonistic muscle groups during swing and stance phases. Nevertheless, neuronal circuits regulating the activation of antagonistic extensor–flexor muscles remain poorly understood. Here we use monosynaptically restricted trans-synaptic viruses to elucidate premotor anatomical substrates for extensor–flexor control in mice. We observe a medio-lateral spatial segregation between extensor and flexor premotor interneurons in the dorsal spinal cord. These premotor interneuron populations are derived from common progenitor domains, but segregate by timing of neurogenesis. We find that proprioceptive sensory feedback from the periphery is targeted to medial extensor premotor populations and is required for extensor-specific connectivity profiles during development. Our findings provide evidence for a discriminating anatomical basis of antagonistic circuits at the level of premotor interneurons, and point to synaptic input and developmental ontogeny as key factors in the establishment of circuits regulating motor behavioural dichotomy.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Spatial segregation of extensor and flexor premotor interneurons.
Figure 2: Adductor and flexor premotor interneurons co-segregate.
Figure 3: Timing of neurogenesis separates extensor and flexor populations.
Figure 4: Dorsal extensor premotor interneurons reside in proprioceptive termination area.
Figure 5: Proprioceptors control connectivity of extensor premotor interneurons.

References

  1. Brown, T. G. The intrinsic factor in the act of progression in the mammal. Proc. R. Soc. Lond. 84, 308–319 (1911)

    Article  ADS  Google Scholar 

  2. Grillner, S. Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52, 751–766 (2006)

    Article  CAS  Google Scholar 

  3. Sherrington, C. S. Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J. Physiol. 40, 28–121 (1910)

    Article  CAS  Google Scholar 

  4. Stuart, D. G. & Hultborn, H. Thomas Graham Brown (1882–1965), Anders Lundberg (1920-), and the neural control of stepping. Brain Res. Rev. 59, 74–95 (2008)

    Article  Google Scholar 

  5. Yakovenko, S., Mushahwar, V., VanderHorst, V., Holstege, G. & Prochazka, A. Spatiotemporal activation of lumbosacral motoneurons in the locomotor step cycle. J. Neurophysiol. 87, 1542–1553 (2002)

    Article  Google Scholar 

  6. Goulding, M. Circuits controlling vertebrate locomotion: moving in a new direction. Nature Rev. Neurosci. 10, 507–518 (2009)

    Article  CAS  Google Scholar 

  7. Kiehn, O. Development and functional organization of spinal locomotor circuits. Curr. Opin. Neurobiol. 21, 100–109 (2011)

    Article  CAS  Google Scholar 

  8. Wang, Z., Li, L., Goulding, M. & Frank, E. Early postnatal development of reciprocal Ia inhibition in the murine spinal cord. J. Neurophysiol. 100, 185–196 (2008)

    Article  Google Scholar 

  9. Grillner, S. & Wallen, P. Central pattern generators for locomotion, with special reference to vertebrates. Annu. Rev. Neurosci. 8, 233–261 (1985)

    Article  CAS  Google Scholar 

  10. Stein, P. S. Motor pattern deletions and modular organization of turtle spinal cord. Brain Res. Rev. 57, 118–124 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Bizzi, E., Cheung, V. C., d’Avella, A., Saltiel, P. & Tresch, M. Combining modules for movement. Brain Res. Rev. 57, 125–133 (2008)

    Article  CAS  Google Scholar 

  12. McCrea, D. A. & Rybak, I. A. Organization of mammalian locomotor rhythm and pattern generation. Brain Res. Rev. 57, 134–146 (2008)

    Article  Google Scholar 

  13. Jankowska, E. Interneuronal relay in spinal pathways from proprioceptors. Prog. Neurobiol. 38, 335–378 (1992)

    Article  CAS  Google Scholar 

  14. Rossignol, S., Dubuc, R. & Gossard, J. P. Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 86, 89–154 (2006)

    Article  Google Scholar 

  15. Windhorst, U. Muscle proprioceptive feedback and spinal networks. Brain Res. Bull. 73, 155–202 (2007)

    Article  CAS  Google Scholar 

  16. Schouenborg, J. Modular organisation and spinal somatosensory imprinting. Brain Res. Rev. 40, 80–91 (2002)

    Article  Google Scholar 

  17. Eccles, J. C., Eccles, R. M. & Lundberg, A. The convergence of monosynaptic excitatory afferents on to many different species of alpha motoneurones. J. Physiol. 137, 22–50 (1957)

    Article  CAS  Google Scholar 

  18. Mears, S. C. & Frank, E. Formation of specific monosynaptic connections between muscle spindle afferents and motoneurons in the mouse. J. Neurosci. 17, 3128–3135 (1997)

    Article  CAS  Google Scholar 

  19. Lloyd, D. P. Integrative pattern of excitation and inhibition in two-neuron reflex arcs. J. Neurophysiol. 9, 439–444 (1946)

    Article  CAS  Google Scholar 

  20. Hultborn, H., Jankowska, E. & Lindstrom, S. Recurrent inhibition of interneurones monosynaptically activated from group Ia afferents. J. Physiol. 215, 613–636 (1971)

    Article  CAS  Google Scholar 

  21. Eccles, R. M. & Lundberg, A. Integrative pattern of Ia synaptic actions on motoneurones of hip and knee muscles. J. Physiol. 144, 271–298 (1958)

    Article  CAS  Google Scholar 

  22. Marshel, J. H., Mori, T., Nielsen, K. J. & Callaway, E. M. Targeting single neuronal networks for gene expression and cell labeling in vivo . Neuron 67, 562–574 (2010)

    Article  CAS  Google Scholar 

  23. Wickersham, I. R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007)

    Article  CAS  Google Scholar 

  24. Stepien, A. E., Tripodi, M. & Arber, S. Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells. Neuron 68, 456–472 (2010)

    Article  CAS  Google Scholar 

  25. McHanwell, S. & Biscoe, T. J. The localization of motoneurons supplying the hindlimb muscles of the mouse. Philos. Trans. R. Soc. Lond. 293, 477–508 (1981)

    Article  ADS  CAS  Google Scholar 

  26. Pratt, C. A., Chanaud, C. M. & Loeb, G. E. Functionally complex muscles of the cat hindlimb. IV. Intramuscular distribution of movement command signals and cutaneous reflexes in broad, bifunctional thigh muscles. Exp. Brain Res. 85, 281–299 (1991)

    Article  CAS  Google Scholar 

  27. Helms, A. W. & Johnson, J. E. Specification of dorsal spinal cord interneurons. Curr. Opin. Neurobiol. 13, 42–49 (2003)

    Article  CAS  Google Scholar 

  28. Gross, M. K., Dottori, M. & Goulding, M. Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron 34, 535–549 (2002)

    Article  CAS  Google Scholar 

  29. Müller, T. et al. The homeodomain factor Lbx1 distinguishes two major programs of neuronal differentiation in the dorsal spinal cord. Neuron 34, 551–562 (2002)

    Article  Google Scholar 

  30. Sieber, M. A. et al. Lbx1 acts as a selector gene in the fate determination of somatosensory and viscerosensory relay neurons in the hindbrain. J. Neurosci. 27, 4902–4909 (2007)

    Article  CAS  Google Scholar 

  31. Hippenmeyer, S. et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 3, e159 (2005)

    Article  Google Scholar 

  32. Zeilhofer, H. U. et al. Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J. Comp. Neurol. 482, 123–141 (2005)

    Article  CAS  Google Scholar 

  33. Kaneko, K. et al. Noradrenergic excitation of a subpopulation of GABAergic cells in the basolateral amygdala via both activation of nonselective cationic conductance and suppression of resting K+ conductance: a study using glutamate decarboxylase 67-green fluorescent protein knock-in mice. Neuroscience 157, 781–797 (2008)

    Article  CAS  Google Scholar 

  34. Wilson, J. M., Blagovechtchenski, E. & Brownstone, R. M. Genetically defined inhibitory neurons in the mouse spinal cord dorsal horn: a possible source of rhythmic inhibition of motoneurons during fictive locomotion. J. Neurosci. 30, 1137–1148 (2010)

    Article  CAS  Google Scholar 

  35. Cheng, L. et al. Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates. Nature Neurosci. 7, 510–517 (2004)

    Article  CAS  Google Scholar 

  36. Nornes, H. O. & Carry, M. Neurogenesis in spinal cord of mouse: an autoradiographic analysis. Brain Res. 159, 1–6 (1978)

    Article  CAS  Google Scholar 

  37. McCrea, D. A. Neuronal basis of afferent-evoked enhancement of locomotor activity. Ann. NY Acad. Sci. 860, 216–225 (1998)

    Article  ADS  CAS  Google Scholar 

  38. Pearson, K. G., Misiaszek, J. E. & Fouad, K. Enhancement and resetting of locomotor activity by muscle afferents. Ann. NY Acad. Sci. 860, 203–215 (1998)

    Article  ADS  CAS  Google Scholar 

  39. Conway, B. A., Hultborn, H. & Kiehn, O. Proprioceptive input resets central locomotor rhythm in the spinal cat. Exp. Brain Res. 68, 643–656 (1987)

    Article  CAS  Google Scholar 

  40. Angel, M. J., Jankowska, E. & McCrea, D. A. Candidate interneurones mediating group I disynaptic EPSPs in extensor motoneurones during fictive locomotion in the cat. J. Physiol. 563, 597–610 (2005)

    Article  CAS  Google Scholar 

  41. Vrieseling, E. & Arber, S. Target-induced transcriptional control of dendritic patterning and connectivity in motor neurons by the ETS gene Pea3. Cell 127, 1439–1452 (2006)

    Article  CAS  Google Scholar 

  42. Arber, S., Ladle, D. R., Lin, J. H., Frank, E. & Jessell, T. M. ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons. Cell 101, 485–498 (2000)

    Article  CAS  Google Scholar 

  43. Baev, K. V., Degtiarenko, A. M., Zavadskaia, T. V. & Kostiuk, P. G. Activity of interneurons of the lumbar region of the spinal cord during fictive locomotion of thalamic cats. Neirofiziologiia 11, 329–338 (1979)

    CAS  PubMed  Google Scholar 

  44. Kjaerulff, O. & Kiehn, O. Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study. J. Neurosci. 16, 5777–5794 (1996)

    Article  CAS  Google Scholar 

  45. Hiebert, G. W. & Pearson, K. G. Contribution of sensory feedback to the generation of extensor activity during walking in the decerebrate cat. J. Neurophysiol. 81, 758–770 (1999)

    Article  CAS  Google Scholar 

  46. McLean, D. L., Fan, J., Higashijima, S., Hale, M. E. & Fetcho, J. R. A topographic map of recruitment in spinal cord. Nature 446, 71–75 (2007)

    Article  ADS  CAS  Google Scholar 

  47. Isshiki, T., Pearson, B., Holbrook, S. & Doe, C. Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106, 511–521 (2001)

    Article  CAS  Google Scholar 

  48. Zong, H., Espinosa, J. S., Su, H. H., Muzumdar, M. D. & Luo, L. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005)

    Article  CAS  Google Scholar 

  49. Deguchi, Y., Donato, F., Galimberti, I., Cabuy, E. & Caroni, P. Temporally matched subpopulations of selectively interconnected principal neurons in the hippocampus. Nature Neurosci. 14, 495–504 (2011)

    Article  CAS  Google Scholar 

  50. Imamura, F., Ayoub, A. E., Rakic, P. & Greer, C. A. Timing of neurogenesis is a determinant of olfactory circuitry. Nature Neurosci. 14, 331–337 (2011)

    Article  CAS  Google Scholar 

  51. Yang, X. et al. Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30, 399–410 (2001)

    Article  CAS  Google Scholar 

  52. Friese, A. et al. Gamma and alpha motor neurons distinguished by expression of transcription factor Err3. Proc. Natl Acad. Sci. USA 106, 13588–13593 (2009)

    Article  ADS  CAS  Google Scholar 

  53. Greene, E. C. Anatomy of the Rat (Hafner, 1935)

    Book  Google Scholar 

  54. Chehrehasa, F., Meedeniya, A. C., Dwyer, P., Abrahamsen, G. & Mackay-Sim, A. EdU, a new thymidine analogue for labelling proliferating cells in the nervous system. J. Neurosci. Methods 177, 122–130 (2009)

    Article  CAS  Google Scholar 

  55. Akay, T., Acharya, H. J., Fouad, K. & Pearson, K. G. Behavioral and electromyographic characterization of mice lacking EphA4 receptors. J. Neurophysiol. 96, 642–651 (2006)

    Article  CAS  Google Scholar 

  56. Carrier, L., Brustein, E. & Rossignol, S. Locomotion of the hindlimbs after neurectomy of ankle flexors in intact and spinal cats: model for the study of locomotor plasticity. J. Neurophysiol. 77, 1979–1993 (1997)

    Article  CAS  Google Scholar 

  57. Chanaud, C. M. & Macpherson, J. M. Functionally complex muscles of the cat hindlimb. III. Differential activation within biceps femoris during postural perturbations. Exp. Brain Res. 85, 271–280 (1991)

    Article  CAS  Google Scholar 

  58. de Leon, R. D., Tamaki, H., Hodgson, J. A., Roy, R. R. & Edgerton, V. R. Hindlimb locomotor and postural training modulates glycinergic inhibition in the spinal cord of the adult spinal cat. J. Neurophysiol. 82, 359–369 (1999)

    Article  CAS  Google Scholar 

  59. Tsuchida, T. et al. Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79, 957–970 (1994)

    Article  CAS  Google Scholar 

  60. Jones, C. L. The morphogenesis of the thigh of the mouse with special reference to tetrapod muscle homologies. J. Morphol. 162, 275–309 (1979)

    Article  CAS  Google Scholar 

  61. Muller, T. et al. The bHLH factor Olig3 coordinates the specification of dorsal neurons in the spinal cord. Genes Dev. 19, 733–743 (2005)

    Article  Google Scholar 

  62. Pecho-Vrieseling, E., Sigrist, M., Yoshida, Y., Jessell, T. M. & Arber, S. Specificity of sensory–motor connections encoded by Sema3e–Plxnd1 recognition. Nature 459, 842–846 (2009)

    Article  ADS  CAS  Google Scholar 

  63. Luo, W., Enomoto, H., Rice, F. L., Milbrandt, J. & Ginty, D. D. Molecular identification of rapidly adapting mechanoreceptors and their developmental dependence on ret signaling. Neuron 64, 841–856 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Sigrist for the generation of Taulox-stop-lox-SynGFP mice, M. Mielich for help in the production of viruses, P. Schwarb, L. Gelman, A. Ponti and M. Stadler for help and advice with image acquisition and statistical analysis, and to P. Caroni, G. Courtine, T. Jessell, B. Roska and P. Scheiffele for discussions and comments on the manuscript. We thank E. Callaway and K. Conzelmann for advice on virus work, and C. Birchmeier for Lbx1cre mice and Tlx3 antibodies. M.T. was supported by an EMBO long-term fellowship, M.T., A.E.S. and S.A. by an ERC Advanced Grant, the Swiss National Science Foundation, the Kanton Basel-Stadt, EU Framework Program 7 and the Novartis Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.T. carried out experiments and data acquisition, and was involved in design of experiments, data analysis and writing of the manuscript. A.E.S. developed the trans-synaptic virus method applied in this study. S.A. initiated the project and design of experiments, analysed data and wrote the manuscript. All authors discussed the experiments and commented on the manuscript.

Corresponding author

Correspondence to Silvia Arber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-11 with legends. (PDF 2418 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tripodi, M., Stepien, A. & Arber, S. Motor antagonism exposed by spatial segregation and timing of neurogenesis. Nature 479, 61–66 (2011). https://doi.org/10.1038/nature10538

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10538

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing