Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atmospheric oxygenation caused by a change in volcanic degassing pressure

Abstract

The Precambrian history of our planet is marked by two major events: a pulse of continental crust formation at the end of the Archaean eon and a weak oxygenation of the atmosphere (the Great Oxidation Event) that followed, at 2.45 billion years ago. This oxygenation has been linked to the emergence of oxygenic cyanobacteria1,2 and to changes in the compositions of volcanic gases3,4, but not to the composition of erupting lavas—geochemical constraints indicate that the oxidation state of basalts and their mantle sources has remained constant since 3.5 billion years ago5,6. Here we propose that a decrease in the average pressure of volcanic degassing changed the oxidation state of sulphur in volcanic gases, initiating the modern biogeochemical sulphur cycle and triggering atmospheric oxygenation. Using thermodynamic calculations simulating gas–melt equilibria in erupting magmas, we suggest that mostly submarine Archaean volcanoes produced gases with SO2/H2S < 1 and low sulphur content. Emergence of the continents due to a global decrease in sea level and growth of the continental crust in the late Archaean then led to widespread subaerial volcanism, which in turn yielded gases much richer in sulphur and dominated by SO2. Dissolution of sulphur in sea water and the onset of sulphate reduction processes could then oxidize the atmosphere.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Calculated sulphur content and speciation in volcanic gases as a function of pressure.
Figure 2: Calculated compositions in mole fractions of volcanic gases as a function of pressure.
Figure 3: Schematic illustrating the relationships between pressure of volcanic degassing and redox biogeochemical cycling.

References

  1. 1

    Buick, R. When did oxygenic photosynthesis evolve? Phil. Trans. R. Soc. Lond. B 363, 2731–2743 (2008)

    CAS  Article  Google Scholar 

  2. 2

    Campbell, I. H. & Allen, C. M. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geosci. 1, 554–558 (2008)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Kasting, J. F., Eggler, D. H. & Raeburn, S. P. Mantle redox evolution and the oxidation state of the Archean atmosphere. J. Geol. 101, 245–257 (1993)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Holland, H. D. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Canil, D. Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet. Sci. Lett. 195, 75–90 (2002)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Li, Z. X. A. & Lee, C. T. A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 228, 483–493 (2004)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Farquhar, J. et al. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449, 706–709 (2007)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Canfield, D. E., Habicht, K. S. & Thamdrup, B. The Archean sulphur cycle and the early history of atmospheric oxygen. Nature 288, 658–661 (2000)

    CAS  Google Scholar 

  9. 9

    Farquhar, J., Bao, H. & Thiemans, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Zahnle, K. J., Claire, M. W. & Catling, D. C. The loss of mass-independent fractionation in sulfur due to a Paleoproterozoic collapse of atmospheric methane. Geobiology 4, 271–283 (2006)

    CAS  Article  Google Scholar 

  11. 11

    Halevy, I., Johnston, D. T. & Schrag, D. P. Explaining the structure of the Archean mass-independent sulfur isotope record. Science 329, 204–207 (2010)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Butterfield, D. A. et al. Seafloor eruptions and evolution of hydrothermal fluid chemistry. Phil. Trans. R. Soc. Lond. A 355, 369–386 (1997)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Kump, L. R. & Seyfried, W. E. Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet. Sci. Lett. 235, 654–662 (2005)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Carmichael, I. S. E. The redox states of basic and silicic magmas: a reflection of their source regions? Contrib. Mineral. Petrol. 106, 129–141 (1991)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Gaillard, F. & Scaillet, B. The sulfur content of volcanic gases on Mars. Earth Planet. Sci. Lett. 279, 34–43 (2009)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Oppenheimer, C., Scaillet, B. & Martin, R. S. Sulfur degassing from volcanoes: source conditions, surveillance, plume chemistry and Earth system impacts. Rev. Mineral. Geochem. 73, 363–421 (2011)

    CAS  Article  Google Scholar 

  18. 18

    Aiuppa, A. et al. H2S fluxes from Mt. Etna, Stromboli and Vulcano (Italy) and implications for the global volcanic sulfur budget. Geochim. Cosmochim. Acta 69, 1861–1871 (2005)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Bickle, M. J. Heat loss from the Earth: a constraint on Archaean tectonics from the relation between geothermal gradients and the rate of heat production. Earth Planet. Sci. Lett. 40, 301–315 (1978)

    ADS  Article  Google Scholar 

  20. 20

    Sleep, N. H. & Windley, B. F. Archean plate tectonics—constraints and inferences. J. Geol. 90, 363–379 (1982)

    ADS  Article  Google Scholar 

  21. 21

    Kasting, J. F. & Holm, N. G. What determines the volume of the oceans. Earth Planet. Sci. Lett. 109, 507–515 (1992)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Bounama, C., Franck, S. & von Bloh, W. The fate of the Earth’s ocean. Hydrol. Earth Syst. Sci. 5, 569–575 (2001)

    ADS  Article  Google Scholar 

  23. 23

    Sandiford, M. & McLaren, S. in Evolution and Differentiation of the Continental Crust (eds Brown, M. & Rushmer, T) 67–92 (Cambridge University Press, 2006)

    Google Scholar 

  24. 24

    Arndt, N. T. Why was flood volcanism on submerged continental platforms so common in the Precambrian? Precambr. Res. 97, 155–164 (1998)

    ADS  Article  Google Scholar 

  25. 25

    Flament, N., Coltice, N. & Rey, P. F. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett. 275, 326–336 (2008)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Taylor, S. R. & McLennan, S. M. The Continental Crust: Its Composition and Evolution 1–312 (Blackwell, 1985)

    Google Scholar 

  27. 27

    Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. & Canfield, D. E. Calibration of sulfate levels in the Archean ocean. Science 298, 2372–2374 (2002)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Lyons, T. W. & Gill, B. C. Ancient sulfur cycling and oxygenation of the early biosphere. Elements 6, 93–99 (2010)

    CAS  Article  Google Scholar 

  29. 29

    Scott, C. T. et al. Late Archean euxinic conditions before the rise of atmospheric oxygen. Geology 39, 119–122 (2011)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Claire, M. W., Catling, D. C. & Zahnle, K. J. Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology 4, 239–269 (2006)

    CAS  Article  Google Scholar 

  31. 31

    Shi, P. F. & Saxena, S. K. Thermodynamic modelling of the C-H-O-S fluid system. Am. Mineral. 77, 1038–1049 (1992)

    CAS  Google Scholar 

  32. 32

    Morizet, Y., Paris, M., Gaillard, F. & Scaillet, B. C–O–H fluid solubility in haplobasalt under reducing conditions: an experimental study. Chem. Geol. 279, 1–16 (2010)

    ADS  CAS  Article  Google Scholar 

  33. 33

    O'Neill, H. S. C. & Mavrogenes, J. The sulfide saturation capacity and the sulphur content at sulfide saturation of silicate melts at 1400 °C and 1 bar. J. Petrol. 43, 1049–1087 (2002)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Gaillard, F., Schmidt, B. C., Mackwell, S. & McCammon, C. Rate of hydrogen-iron redox exchange in silicate melts and glasses. Geochim. Cosmochim. Acta 67, 2427–2441 (2003)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Kress, V. C. & Carmichael, I. S. E. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib. Mineral. Petrol. 108, 82–92 (1991)

    ADS  CAS  Article  Google Scholar 

  36. 36

    Burgisser, A. & Scaillet, B. Redox evolution of degassing magma rising to the surface. Nature 445, 194–197 (2007)

    ADS  CAS  Article  Google Scholar 

  37. 37

    Pommier, A., Gaillard, F. & Pichavant, M. Time-dependent changes of the electrical conductivity of basaltic melts with redox state. Geochim. Cosmochim. Acta 74, 1653–1671 (2010)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank T. Lyons, D. Canil and N. Sleep for comments. We acknowledge support by INSU-PNP and the ANR (grants ANR-10-BLAN-60301 and ANR-10-BLAN-62101).

Author information

Affiliations

Authors

Contributions

All authors contributed to discussions and writing. F.G. performed the calculations and wrote the first draft.

Corresponding author

Correspondence to Fabrice Gaillard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-3 with legends, Supplementary Tables 1-2 and a Supplementary Reference. (PDF 929 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gaillard, F., Scaillet, B. & Arndt, N. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 229–232 (2011). https://doi.org/10.1038/nature10460

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing