Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor

Abstract

Blood-feeding insects such as mosquitoes are efficient vectors of human infectious diseases because they are strongly attracted by body heat, carbon dioxide and odours produced by their vertebrate hosts. Insect repellents containing DEET (N,N-diethyl-meta-toluamide) are highly effective, but the mechanism by which this chemical wards off biting insects remains controversial despite decades of investigation1,2,3,4,5,6,7,8,9,10,11. DEET seems to act both at close range as a contact chemorepellent, by affecting insect gustatory receptors12, and at long range, by affecting the olfactory system1,2,3,4,5,6,7,8,9,10,11. Two opposing mechanisms for the observed behavioural effects of DEET in the gas phase have been proposed: that DEET interferes with the olfactory system to block host odour recognition1,2,3,4,5,6,7 and that DEET actively repels insects by activating olfactory neurons that elicit avoidance behaviour8,9,10,11. Here we show that DEET functions as a modulator of the odour-gated ion channel formed by the insect odorant receptor complex13,14. The functional insect odorant receptor complex consists of a common co-receptor, ORCO (ref. 15) (formerly called OR83B; ref. 16), and one or more variable odorant receptor subunits that confer odour selectivity17. DEET acts on this complex to potentiate or inhibit odour-evoked activity or to inhibit odour-evoked suppression of spontaneous activity. This modulation depends on the specific odorant receptor and the concentration and identity of the odour ligand. We identify a single amino-acid polymorphism in the second transmembrane domain of receptor OR59B in a Drosophila melanogaster strain from Brazil that renders OR59B insensitive to inhibition by the odour ligand and modulation by DEET. Our data indicate that natural variation can modify the sensitivity of an odour-specific insect odorant receptor to odour ligands and DEET. Furthermore, they support the hypothesis that DEET acts as a molecular ‘confusant’ that scrambles the insect odour code, and provide a compelling explanation for the broad-spectrum efficacy of DEET against multiple insect species.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: DEET scrambles the Drosophila odour code.
Figure 2: OR59B–ORCO sensitivity to DEET varies across wild-type D. melanogaster strains.
Figure 3: OR59B–ORCO neurons in the Boa Esperança strain are insensitive to modulation by DEET.
Figure 4: A single natural polymorphism in OR59B confers insensitivity to DEET.

References

  1. Davis, E. E. & Sokolove, P. G. Lactic acid-sensitive receptors on the antennae of the mosquito, Aedes aegypti. J. Comp. Physiol. A 105, 43–54 (1976)

    CAS  Article  Google Scholar 

  2. McIver, S. B. A model for the mechanism of action of the repellent DEET on Aedes Aegypti (Diptera: Culicidae). J. Med. Entomol. 18, 357–361 (1981)

    CAS  Article  Google Scholar 

  3. Dogan, E. B., Ayres, J. W. & Rossignol, P. A. Behavioural mode of action of DEET: inhibition of lactic acid attraction. Med. Vet. Entomol. 13, 97–100 (1999)

    CAS  Article  Google Scholar 

  4. Dogan, E. B. & Rossignol, P. A. An olfactometer for discriminating between attraction, inhibition, and repellency in mosquitoes (Diptera: Culicidae). J. Med. Entomol. 36, 788–793 (1999)

    CAS  Article  Google Scholar 

  5. Reeder, N. L., Ganz, P. J., Carlson, J. R. & Saunders, C. W. Isolation of a deet-insensitive mutant of Drosophila melanogaster (Diptera: Drosophilidae). J. Econ. Entomol. 94, 1584–1588 (2001)

    CAS  Article  Google Scholar 

  6. Kline, D. L., Bernier, U. R., Posey, K. H. & Barnard, D. R. Olfactometric evaluation of spatial repellents for Aedes aegypti. J. Med. Entomol. 40, 463–467 (2003)

    CAS  Article  Google Scholar 

  7. Ditzen, M., Pellegrino, M. & Vosshall, L. B. Insect odorant receptors are molecular targets of the insect repellent DEET. Science 319, 1838–1842 (2008)

    ADS  CAS  Article  Google Scholar 

  8. Xia, Y. et al. The molecular and cellular basis of olfactory-driven behavior in Anopheles gambiae larvae. Proc. Natl Acad. Sci. USA 105, 6433–6438 (2008)

    ADS  CAS  Article  Google Scholar 

  9. Syed, Z. & Leal, W. S. Mosquitoes smell and avoid the insect repellent DEET. Proc. Natl Acad. Sci. USA 105, 13598–13603 (2008)

    ADS  CAS  Article  Google Scholar 

  10. Stanczyk, N. M., Brookfield, J. F., Ignell, R., Logan, J. G. & Field, L. M. Behavioral insensitivity to DEET in Aedes aegypti is a genetically determined trait residing in changes in sensillum function. Proc. Natl Acad. Sci. USA 107, 8575–8580 (2010)

    ADS  CAS  Article  Google Scholar 

  11. Liu, C. et al. Distinct olfactory signaling mechanisms in the malaria vector mosquito Anopheles gambiae. PLoS Biol. 8, e1000467 (2010)

    Article  Google Scholar 

  12. Lee, Y. S., Kim, S. H. & Montell, C. Avoiding DEET through insect gustatory receptors. Neuron 67, 555–561 (2010)

    CAS  Article  Google Scholar 

  13. Sato, K. et al. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452, 1002–1006 (2008)

    ADS  CAS  Article  Google Scholar 

  14. Wicher, D. et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452, 1007–1011 (2008)

    ADS  CAS  Article  Google Scholar 

  15. Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703–714 (2004)

    CAS  Article  Google Scholar 

  16. Vosshall, L. B. & Hansson, B. S. A unified nomenclature system for the insect olfactory co-receptor. Chem. Senses 36, 497–498 (2011)

    Article  Google Scholar 

  17. Hallem, E. A. & Carlson, J. R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006)

    CAS  Article  Google Scholar 

  18. Bohbot, J. D. & Dickens, J. C. Insect repellents: modulators of mosquito odorant receptor activity. PLoS ONE 5, e12138 (2010)

    ADS  Article  Google Scholar 

  19. Keller, A., Zhuang, H., Chi, Q., Vosshall, L. B. & Matsunami, H. Genetic variation in a human odorant receptor alters odour perception. Nature 449, 468–472 (2007)

    ADS  CAS  Article  Google Scholar 

  20. Menashe, I. et al. Genetic elucidation of human hyperosmia to isovaleric acid. PLoS Biol. 5, e284 (2007)

    Article  Google Scholar 

  21. McGrath, P. T. et al. Quantitative mapping of a digenic behavioral trait implicates globin variation in C. elegans sensory behaviors. Neuron 61, 692–699 (2009)

    CAS  Article  Google Scholar 

  22. Gross, S. P., Guo, Y., Martinez, J. E. & Welte, M. A. A determinant for directionality of organelle transport in Drosophila embryos. Curr. Biol. 13, 1660–1668 (2003)

    CAS  Article  Google Scholar 

  23. Hallem, E. A., Ho, M. G. & Carlson, J. R. The molecular basis of odor coding in the Drosophila antenna. Cell 117, 965–979 (2004)

    CAS  Article  Google Scholar 

  24. Nichols, A. S. & Luetje, C. W. Transmembrane segment 3 of Drosophila melanogaster odorant receptor subunit 85b contributes to ligand-receptor interactions. J. Biol. Chem. 285, 11854–11862 (2010)

    CAS  Article  Google Scholar 

  25. Laish-Farkash, A. et al. A novel mutation in the HCN4 gene causes symptomatic sinus bradycardia in Moroccan Jews. J. Cardiovasc. Electrophysiol. 21, 1365–1372 (2010)

    Article  Google Scholar 

  26. Robertson, H. M., Warr, C. G. & Carlson, J. R. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 100 (suppl. 2). 14537–14542 (2003)

    ADS  CAS  Article  Google Scholar 

  27. Robertson, H. M. & Wanner, K. W. The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res. 16, 1395–1403 (2006)

    CAS  Article  Google Scholar 

  28. Bohbot, J. et al. Molecular characterization of the Aedes aegypti odorant receptor gene family. Insect Mol. Biol. 16, 525–537 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Takken, W. & Knols, B. G. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu. Rev. Entomol. 44, 131–157 (1999)

    CAS  Article  Google Scholar 

  30. Stensmyr, M. C., Giordano, E., Balloi, A., Angioy, A. M. & Hansson, B. S. Novel natural ligands for Drosophila olfactory receptor neurones. J. Exp. Biol. 206, 715–724 (2003)

    CAS  Article  Google Scholar 

  31. Bischof, J., Maeda, R. K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl Acad. Sci. USA 104, 3312–3317 (2007)

    ADS  CAS  Article  Google Scholar 

  32. Markstein, M., Pitsouli, C., Villalta, C., Celniker, S. E. & Perrimon, N. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nature Genet. 40, 476–483 (2008)

    CAS  Article  Google Scholar 

  33. Dobritsa, A. A., van der Goes van Naters, W., Warr, C. G., Steinbrecht, R. A. & Carlson, J. R. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37, 827–841 (2003)

    CAS  Article  Google Scholar 

  34. Fishilevich, E. & Vosshall, L. B. Genetic and functional subdivision of the Drosophila antennal lobe. Curr. Biol. 15, 1548–1553 (2005)

    CAS  Article  Google Scholar 

  35. Ditzen, M., Pellegrino, M. & Vosshall, L. B. Insect odorant receptors are molecular targets of the insect repellent DEET. Science 319, 1838–1842 (2008)

    ADS  CAS  Article  Google Scholar 

  36. Pellegrino, M., Nakagawa, T. & Vosshall, L. B. Single sensillum recordings in the insects Drosophila melanogaster and Anopheles gambiae. J. Vis. Exp. 36, 1–5 (2010)

    Google Scholar 

  37. Hallem, E. A. & Carlson, J. R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006)

    CAS  Article  Google Scholar 

  38. Rost, B., Yachdav, G. & Liu, J. The PredictProtein server. Nucleic Acids Res. 32, W321–W326 (2004)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank C. Bargmann, K. Lee, K. Scott, L. Stowers and members of the Vosshall lab for discussion and comments on the manuscript; and K. Weniger for technical assistance with the SPME and GC–MS experiments. This work was funded in part by a grant to R. Axel and L.B.V. from the Foundation for the National Institutes of Health through the Grand Challenges in Global Health Initiative and by a grant to L.B.V. from the NIH (RO1 DC008600). L.B.V. is an investigator of the Howard Hughes Medical Institute. M.C.S. and B.S.H. are supported by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

M.P. carried out all the experiments and analysed the data. N.S. contributed to sequencing Or59b in the 19 strains and generated the Or59b mutants. M.C.S. and B.S.H. designed and supervised the SPME collections and GC–MS analysis in Fig. 1a. M.P. and L.B.V. together designed the experiments, interpreted the results, produced the figures and wrote the paper.

Corresponding author

Correspondence to Leslie B. Vosshall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Table 1 and Supplementary Figures 1-7 with legends. (PDF 590 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pellegrino, M., Steinbach, N., Stensmyr, M. et al. A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor. Nature 478, 511–514 (2011). https://doi.org/10.1038/nature10438

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10438

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing