Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular organization of vomeronasal chemoreception


The vomeronasal organ (VNO) has a key role in mediating the social and defensive responses of many terrestrial vertebrates to species- and sex-specific chemosignals1. More than 250 putative pheromone receptors have been identified in the mouse VNO2,3, but the nature of the signals detected by individual VNO receptors has not yet been elucidated. To gain insight into the molecular logic of VNO detection leading to mating, aggression or defensive responses, we sought to uncover the response profiles of individual vomeronasal receptors to a wide range of animal cues. Here we describe the repertoire of behaviourally and physiologically relevant stimuli detected by a large number of individual vomeronasal receptors in mice, and define a global map of vomeronasal signal detection. We demonstrate that the two classes (V1R and V2R) of vomeronasal receptors use fundamentally different strategies to encode chemosensory information, and that distinct receptor subfamilies have evolved towards the specific recognition of certain animal groups or chemical structures. The association of large subsets of vomeronasal receptors with cognate, ethologically and physiologically relevant stimuli establishes the molecular foundation of vomeronasal information coding, and opens new avenues for further investigating the neural mechanisms underlying behaviour specificity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Egr1 expression is robustly induced by pheromone-evoked VNO neuronal activation.
Figure 2: Widespread activation of VNO receptors by conspecific and heterospecific cues.
Figure 3: Receptor responses to sex-specific cues.
Figure 4: Receptor responses to heterospecific cues.
Figure 5: Sulphated steroids detection by V1Rs.


  1. 1

    Dulac, C. & Torello, A. T. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nature Rev. Neurosci. 4, 551–562 (2003)

    CAS  Article  Google Scholar 

  2. 2

    Zhang, X., Marcucci, F. & Firestein, S. High-throughput microarray detection of vomeronasal receptor gene expression in rodents. Front. Neuroscience 4, 164 (2010)

    Article  Google Scholar 

  3. 3

    Dulac, C. & Axel, R. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195–206 (1995)

    CAS  Article  Google Scholar 

  4. 4

    Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991)

    CAS  Article  Google Scholar 

  5. 5

    Papes, F., Logan, D. W. & Stowers, L. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141, 692–703 (2010)

    CAS  Article  Google Scholar 

  6. 6

    Haga, S. et al. The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature 466, 118–122 (2010)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Leinders-Zufall, T., Ishii, T., Mombaerts, P., Zufall, F. & Boehm, T. Structural requirements for the activation of vomeronasal sensory neurons by MHC peptides. Nature Neurosci. 12, 1551–1558 (2009)

    CAS  Article  Google Scholar 

  8. 8

    Boschat, C. et al. Pheromone detection mediated by a V1r vomeronasal receptor. Nature Neurosci. 5, 1261–1262 (2002)

    CAS  Article  Google Scholar 

  9. 9

    He, J., Ma, L., Kim, S., Nakai, J. & Yu, C. R. Encoding gender and individual information in the mouse vomeronasal organ. Science 320, 535–538 (2008)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Leinders-Zufall, T. et al. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405, 792–796 (2000)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Holekamp, T. F., Turaga, D. & Holy, T. E. Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron 57, 661–672 (2008)

    CAS  Article  Google Scholar 

  12. 12

    Stowers, L., Holy, T. E., Meister, M., Dulac, C. & Koentges, G. Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295, 1493–1500 (2002)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Ben-Shaul, Y., Katz, L. C., Mooney, R. & Dulac, C. In vivo vomeronasal stimulation reveals sensory encoding of conspecific and allospecific cues by the mouse accessory olfactory bulb. Proc. Natl Acad. Sci. USA 107, 5172–5177 (2010)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Berghard, A. & Buck, L. B. Sensory transduction in vomeronasal neurons: evidence for Gαo, Gαi2, and adenylyl cyclase II as major components of a pheromone signaling cascade. J. Neurosci. 16, 909–918 (1996)

    CAS  Article  Google Scholar 

  15. 15

    Jia, C. & Halpern, M. Subclasses of vomeronasal receptor neurons: differential expression of G proteins (Gαi2 and Gαo) and segregated projections to the accessory olfactory bulb. Brain Res. 719, 117–128 (1996)

    CAS  Article  Google Scholar 

  16. 16

    Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature Methods 6, 875–881 (2009)

    CAS  Article  Google Scholar 

  17. 17

    Martini, S., Silvotti, L., Shirazi, A., Ryba, N. J. & Tirindelli, R. Co-expression of putative pheromone receptors in the sensory neurons of the vomeronasal organ. J. Neurosci. 21, 843–848 (2001)

    CAS  Article  Google Scholar 

  18. 18

    Stewart, R. & Lane, R. P. V1R promoters are well conserved and exhibit common putative regulatory motifs. BMC Genomics 8, 253 (2007)

    Article  Google Scholar 

  19. 19

    Liberles, S. D. et al. Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc. Natl Acad. Sci. USA 106, 9842–9847 (2009)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Rivière, S., Challet, L., Fluegge, D., Spehr, M. & Rodriguez, I. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459, 574–577 (2009)

    ADS  Article  Google Scholar 

  21. 21

    Holy, T. E., Dulac, C. & Meister, M. Responses of vomeronasal neurons to natural stimuli. Science 289, 1569–1572 (2000)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Taha, M., McMillon, R., Napier, A. & Wekesa, K. S. Extracts from salivary glands stimulate aggression and inositol-1, 4, 5-triphosphate (IP3) production in the vomeronasal organ of mice. Physiol. Behav. 98, 147–155 (2009)

    CAS  Article  Google Scholar 

  23. 23

    Samuelsen, C. L. & Meredith, M. The vomeronasal organ is required for the male mouse medial amygdala response to chemical-communication signals, as assessed by immediate early gene expression. Neuroscience 164, 1468–1476 (2009)

    CAS  Article  Google Scholar 

  24. 24

    Brown, J., Kotler, B., Smith, R. & Wirtz, W. The effects of owl predation on the foraging behavior of heteromyid rodents. Oecologia 76, 408–415 (1988)

    ADS  Article  Google Scholar 

  25. 25

    Sundell, J. et al. Variation in predation risk and vole feeding behaviour: a field test of the risk allocation hypothesis. Oecologia 139, 157–162 (2004)

    ADS  Article  Google Scholar 

  26. 26

    Wagner, S., Gresser, A. L., Torello, A. T. & Dulac, C. A multireceptor genetic approach uncovers an ordered integration of VNO sensory inputs in the accessory olfactory bulb. Neuron 50, 697–709 (2006)

    CAS  Article  Google Scholar 

  27. 27

    Chevret, P., Veyrunes, F. & Britton-Davidian, J. Molecular phylogeny of the genus Mus (Rodentia: Murinae) based on mitochondrial and nuclear data. Biol. J. Linn. Soc. 84, 417–427 (2005)

    Article  Google Scholar 

  28. 28

    Guénet, J. L. & Bonhomme, F. Wild mice: an ever-increasing contribution to a popular mammalian model. Trends Genet. 19, 24–31 (2003)

    Article  Google Scholar 

  29. 29

    Dulac, C. & Wagner, S. Genetic analysis of brain circuits underlying pheromone signaling. Annu. Rev. Genet. 40, 449–467 (2006)

    CAS  Article  Google Scholar 

  30. 30

    Nodari, F. et al. Sulfated steroids as natural ligands of mouse pheromone-sensing neurons. J. Neurosci. 28, 6407–6418 (2008)

    CAS  Article  Google Scholar 

  31. 31

    Miller, R. A. et al. Mouse (Mus musculus) stocks derived from tropical islands: new models for genetic analysis of life-history traits. J. Zool. 250, 95–104 (2000)

    Article  Google Scholar 

  32. 32

    Schaeren-Wiemers, N. & Gerfin-Moser, A. A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100, 431–440 (1993)

    CAS  Article  Google Scholar 

  33. 33

    Danciger, E., Mettling, C., Vidal, M., Morris, R. & Margolis, F. Olfactory marker protein gene: its structure and olfactory neuron-specific expression in transgenic mice. Proc. Natl Acad. Sci. USA 86, 8565–8569 (1989)

    ADS  CAS  Article  Google Scholar 

Download references


We acknowledge H. Fisher, H. Hoekstra, E. Kay, M. Kirchgessner, N. Uchida, A. Wang, X.-D. Wang, B. Watson, W. Tong, Harvard Museum of Natural History, Harvard Concord Field Station, Museum of Science, Boston, and New England Wildlife Center, for providing stimulus materials used in this study, L. Looger for the G-CaMP3 construct, M. Wienisch, F. Markopoulos and D. Mak for help with electrophysiology and imaging experiments, and B. Goetze and the Harvard Center for Biological Imaging for help with microscopy. We also thank members of the Dulac laboratory for critical reading of the manuscript, S. Andreeva for technical support and R. Hellmiss for help with figure artwork. This work was supported by the NIDCD at the National Institute of Health, the Howard Hughes Medical Institute and the Damon Runyon Cancer Research Foundation (Y.I., DRG-1981-08).

Author information




Y.I. and C.D. designed the study. Y.I., S.S. and T.T. designed and generated RNA probes, performed RNA in situ hybridization, and analysed data. L.P.-L. performed pilot experiments for data shown in Fig. 1 and produced recombinant ESP1. Y.I. and V.K. performed calcium imaging and electrophysiology. V.N.M. supervised physiology experiments. Y.I. and C.D. wrote the paper.

Corresponding author

Correspondence to Catherine Dulac.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-12 with legends and Supplementary Tables 1-2. (PDF 24866 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Isogai, Y., Si, S., Pont-Lezica, L. et al. Molecular organization of vomeronasal chemoreception. Nature 478, 241–245 (2011).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing