Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Linking mantle plumes, large igneous provinces and environmental catastrophes

Subjects

Abstract

Large igneous provinces (LIPs) are known for their rapid production of enormous volumes of magma (up to several million cubic kilometres in less than a million years)1, for marked thinning of the lithosphere2,3, often ending with a continental break-up, and for their links to global environmental catastrophes4,5. Despite the importance of LIPs, controversy surrounds even the basic idea that they form through melting in the heads of thermal mantle plumes2,3,6,7,8,9,10. The Permo-Triassic Siberian Traps11—the type example and the largest continental LIP1,12—is located on thick cratonic lithosphere1,12 and was synchronous with the largest known mass-extinction event1. However, there is no evidence of pre-magmatic uplift or of a large lithospheric stretching7, as predicted above a plume head2,6,9. Moreover, estimates of magmatic CO2 degassing from the Siberian Traps are considered insufficient to trigger climatic crises13,14,15, leading to the hypothesis that the release of thermogenic gases from the sediment pile caused the mass extinction15,16. Here we present petrological evidence for a large amount (15 wt%) of dense recycled oceanic crust in the head of the plume and develop a thermomechanical model that predicts no pre-magmatic uplift and requires no lithospheric extension. The model implies extensive plume melting and heterogeneous erosion of the thick cratonic lithosphere over the course of a few hundred thousand years. The model suggests that massive degassing of CO2 and HCl, mostly from the recycled crust in the plume head, could alone trigger a mass extinction and predicts it happening before the main volcanic phase, in agreement with stratigraphic and geochronological data for the Siberian Traps and other LIPs5.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Petrological constraints.
Figure 2: Model.
Figure 3: Model predictions.
Figure 4: Production of volatiles and its consequences for mass extinctions.

References

  1. Reichow, M. K. et al. The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277, 9–20 (2009)

    ADS  CAS  Article  Google Scholar 

  2. White, R. & McKenzie, D. Magmatism at rift zones—the generation of volcanic continental margins and flood basalts. J. Geophys. Res. Solid Earth Planets 94, 7685–7729 (1989)

    Article  Google Scholar 

  3. Garfunkel, Z. Formation of continental flood volcanism—the perspective of setting of melting. Lithos 100, 49–65 (2008)

    ADS  CAS  Article  Google Scholar 

  4. Courtillot, V. E. & Renne, P. R. On the ages of flood basalt events. C. R. Geosci. 335, 113–140 (2003)

    Article  Google Scholar 

  5. Wignall, P. B. Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 1–33 (2001)

    ADS  CAS  Article  Google Scholar 

  6. Campbell, I. H. & Griffiths, R. W. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet. Sci. Lett. 99, 79–93 (1990)

    ADS  CAS  Article  Google Scholar 

  7. Czamanske, G. K., Gurevitch, A. B., Fedorenko, V. & Simonov, O. Demise of the Siberian plume: paleogeographic and paleotectonic reconstruction from the prevolcanic and volcanic record, north-central Siberia. Int. Geol. Rev. 40, 95–115 (1998)

    Article  Google Scholar 

  8. Elkins-Tanton, L. T. & Hager, B. H. Melt intrusion as a trigger for lithospheric foundering and the eruption of the Siberian flood basalts. Geophys. Res. Lett. 27, 3937–3940 (2000)

    ADS  Article  Google Scholar 

  9. Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hot-spot tracks—plume heads and tails. Science 246, 103–107 (1989)

    ADS  CAS  Article  Google Scholar 

  10. Cordery, M. J., Davies, G. F. & Campbell, I. H. Genesis of flood basalts from eclogite-bearing mantle plumes. J. Geophys. Res. Solid Earth 102, 20179–20197 (1997)

    CAS  Article  Google Scholar 

  11. Sobolev, V. S. Petrology of Siberian Traps (Transactions of All-Union Arctic Institute, vol. 43) (Glavnogo Upravleniaya Sevmorputi, 1936)

    Google Scholar 

  12. Dobretsov, N. L., Kirdyashkin, A. A., Kirdyashkin, A. G., Vernikovsky, V. A. & Gladkov, I. N. Modelling of thermochemical plumes and implications for the origin of the Siberian traps. Lithos 100, 66–92 (2008)

    ADS  CAS  Article  Google Scholar 

  13. Self, S., Widdowson, M., Thordarson, T. & Jay, A. E. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: a Deccan perspective. Earth Planet. Sci. Lett. 248, 518–532 (2006)

    ADS  CAS  Article  Google Scholar 

  14. Sobolev, A. V., Krivolutskaya, N. A. & Kuzmin, D. V. Petrology of the parental melts and mantle sources of Siberian trap magmatism. Petrology 17, 253–286 (2009)

    CAS  Article  Google Scholar 

  15. Svensen, H. et al. Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277, 490–500 (2009)

    ADS  CAS  Article  Google Scholar 

  16. Ganino, C. & Arndt, N. T. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37, 323–326 (2009)

    ADS  CAS  Article  Google Scholar 

  17. Sobolev, A. V., Sobolev, S. V., Kuzmin, D. V., Malitch, K. N. & Petrunin, A. G. Siberian meimechites: origin and relation to flood basalts and kimberlites. Russ. Geol. Geophys. 50, 999–1033 (2009)

    ADS  Article  Google Scholar 

  18. Sobolev, A. V. et al. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417 (2007)

    ADS  CAS  Article  Google Scholar 

  19. Fedorenko, V. A. et al. Petrogenesis of the flood-basalt sequence at Noril’sk, North Central Siberia. Int. Geol. Rev. 38, 99–135 (1996)

    Article  Google Scholar 

  20. Wooden, J. L. et al. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Norilsk Area, Siberia. Geochim. Cosmochim. Acta 57, 3677–3704 (1993)

    ADS  CAS  Article  Google Scholar 

  21. Farnetani, C. G. & Richards, M. A. Numerical investigations of the mantle plume initiation model for flood-basalt events. J. Geophys. Res. Solid Earth 99, 13813–13833 (1994)

    Article  Google Scholar 

  22. Leng, W. & Zhong, S. J. Surface subsidence caused by mantle plumes and volcanic loading in large igneous provinces. Earth Planet. Sci. Lett. 291, 207–214 (2010)

    ADS  CAS  Article  Google Scholar 

  23. Payne, J. L. et al. Calcium isotope constraints on the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 107, 8543–8548 (2010)

    ADS  CAS  Article  Google Scholar 

  24. Hauri, E. SIMS analysis of volatiles in silicate glasses. 2. Isotopes and abundances in Hawaiian melt inclusions. Chem. Geol. 183, 115–141 (2002)

    ADS  CAS  Article  Google Scholar 

  25. Grasby, S. E., Sanei, H. & Beauchamp, B. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nature Geosci. 4, 104–107 (2011)

    ADS  CAS  Article  Google Scholar 

  26. Kamo, S. L. et al. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma. Earth Planet. Sci. Lett. 214, 75–91 (2003)

    ADS  CAS  Article  Google Scholar 

  27. Mundil, R., Palfy, J., Renne, P. R. & Black, P. The Triassic timescale: new constraints and a review of geochronological data. Geol. Soc. Lond. Spec. Pub. 334, 41–60 (2010)

    ADS  Article  Google Scholar 

  28. Payne, J. L. & Kump, L. R. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth Planet. Sci. Lett. 256, 264–277 (2007)

    ADS  CAS  Article  Google Scholar 

  29. Beerling, D. J., Harfoot, M., Lomax, B. & Pyle, J. A. The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Phil. Trans. R. Soc. Lond. A 365, 1843–1866 (2007)

    ADS  CAS  Article  Google Scholar 

  30. Ridgwell, A. A mid Mesozoic revolution in the regulation of ocean chemistry. Mar. Geol. 217, 339–357 (2005)

    ADS  CAS  Article  Google Scholar 

  31. Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene Boundary. Science 327, 1214–1218 (2010)

    ADS  CAS  Article  Google Scholar 

  32. Masaitis, V. L. Permian and Triassic volcanism of Siberia: problems of dynamic reconstructions [in Russian]. Zapiski Vsesouznogo Mineralogicheskogo Obshestva 112, 412–425 (1983)

    Google Scholar 

  33. White, R. V. & Saunders, A. D. Volcanism, impact and mass extinctions: incredible or credible coincidences? Lithos 79, 299–316 (2005)

    ADS  CAS  Article  Google Scholar 

  34. Stoll, B. et al. An automated iridium-strip heater for LA-ICP-MS bulk analysis of geological samples. Geostand. Geoanal. Res. 32, 5–26 (2008)

    CAS  Article  Google Scholar 

  35. Jarosevich, E. J., Nelen, J. A. & Norberg, J. A. Reference sample fro electron microprobe analysis. Geostand. Newsl. 4, 43–47 (1980)

    Article  Google Scholar 

  36. Jochum, K. P. et al. The preparation and preliminary characterisation of eight geological MPI-DING reference glasses for in-site microanalysis. Geostand. Newsl. 24, 87–133 (2000)

    CAS  Article  Google Scholar 

  37. Herzberg, C. Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. J. Petrol. 52, 113–146 (2011)

    ADS  CAS  Article  Google Scholar 

  38. Sobolev, A. V., Hofmann, A. W., Brugmann, G., Batanova, V. G. & Kuzmin, D. V. A quantitative link between recycling and osmium isotopes. Science 321, 536 (2008)

    ADS  CAS  Article  Google Scholar 

  39. Sobolev, A. V., Hofmann, A. W., Sobolev, S. V. & Nikogosian, I. K. An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590–597 (2005)

    ADS  CAS  Article  Google Scholar 

  40. Beattie, P., Ford, C. & Russell, D. Partition coefficients for olivine-melt and orthopyroxene-melt systems. Contrib. Mineral. Petrol. 109, 212–224 (1991)

    ADS  CAS  Article  Google Scholar 

  41. Ryabchikov, I. D. High NiO content in mantle-derived magmas as evidence for material transfer from the Earth’s core. Dokl. Earth Sci. 389, 437–439 (2003)

    Google Scholar 

  42. Humayun, M., Qin, L. P. & Norman, M. D. Geochemical evidence for excess iron in the mantle beneath Hawaii. Science 306, 91–94 (2004)

    ADS  CAS  Article  Google Scholar 

  43. Holzapfel, C., Chakraborty, S., Rubie, D. D. & Frost, D. J. Effect of pressure on Fe-Mg, Ni and Mn diffusion in (Fe x Mg1−x )2SiO4 olivine. Phys. Earth Planet. Inter. 162, 186–198 (2007)

    ADS  CAS  Article  Google Scholar 

  44. Kelemen, P. B., Hart, S. R. & Bernstein, S. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet. Sci. Lett. 164, 387–406 (1998)

    ADS  CAS  Article  Google Scholar 

  45. Manglik, A. & Christensen, U. R. Effect of lithospheric root on decompression melting in plume–lithosphere interaction models. Geophys. J. Int. 164, 259–270 (2006)

    ADS  Article  Google Scholar 

  46. Ryabchikov, I. D., Solovova, I. P., Ntaflos, T., Buchl, A. & Tikhonenkov, P. I. Subalkaline picrobasalts and plateau basalts from the Putorana plateau (Siberian continental flood basalt province). II. Melt inclusion chemistry, composition of ‘primary’ magmas and PT regime at the base of the superplume. Geochem. Int. 39, 432–446 (2001)

    Google Scholar 

  47. Safonov, O. G., Kamenetsky, V. S. & Perchuk, L. L. Links between carbonatite and kimberlite melts in chloride–carbonate–silicate systems: experiments and application to natural assemblages. J. Petrol. 52, 1307–1331 (2011)

    ADS  CAS  Article  Google Scholar 

  48. Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 298, 1–13 (2010)

    ADS  CAS  Article  Google Scholar 

  49. Sobolev, S. V. & Babeyko, A. Y. What drives orogeny in the Andes? Geology 33, 617–620 (2005)

    ADS  Article  Google Scholar 

  50. Babeyko, A. Y., Sobolev, S. V., Trumbull, R. B., Oncken, O. & Lavier, L. L. Numerical models of crustal scale convection and partial melting beneath the Altiplano-Puna plateau. Earth Planet. Sci. Lett. 199, 373–388 (2002)

    ADS  CAS  Article  Google Scholar 

  51. Poliakov, A. N., Cundall, P. A., Podladchikov, Y. Y. & Lyakhovsky, V. A. in Flow and Creep in the Solar System: Observations, Modelling and Theory (eds Stone, D. B. & Runcorn, S. K.) 175–195 (Kluwer Academic, 1993)

    Book  Google Scholar 

  52. Katz, R. F., Spiegelman, M. & Langmuir, C. H. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4 10.1029/2002gc000433 (2003)

  53. Spandler, C., Yaxley, G., Green, D. H. & Rosenthal, A. Phase relations and melting of anhydrous K-bearing eclogite from 1200 to 1600 degrees C and 3 to 5 GPa. J. Petrol. 49, 771–795 (2008)

    ADS  CAS  Article  Google Scholar 

  54. Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman, M. & Dick, H. J. B. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Phil. Trans. R. Soc. Lond. A 355, 283–318 (1997)

    ADS  Article  Google Scholar 

  55. Dasgupta, R. & Hirschmann, M. M. Effect of variable carbonate concentration on the solidus of mantle peridotite. Am. Mineral. 92, 370–379 (2007)

    ADS  CAS  Article  Google Scholar 

  56. Wignall, P. B. et al. Volcanism, mass extinction and carbon isotope fluctuations in the Middle Permian of China. Science 324, 1179–1182 (2009)

    ADS  CAS  Article  Google Scholar 

  57. Retallack, G. J. & Jahren, A. H. Methane release from igneous intrusion of coal during late Permian extinction events. J. Geol. 116, 1–20 (2008)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

S.V.S. and A.V.S. are especially grateful to Vladimir Stepanovich Sobolev, who excited their interest in the origin of the Siberian Traps. We thank G. A. Fedorenko for providing data on the Norilsk lavas and for discussions; N. Groschopf for help in managing the electron probe microanalyser; O. Kuzmina, N. Svirskaya and T. Shlichkova for sample preparation; P. Cardin, N. Dobretsov, E. Galimov, C. Herzberg, A. Hofmann, L. Kogarko, H.-C. Nataf, J. Payne, Y. Podladchikov, I. Ryabchikov, A. Turchyn and G. Wörner for discussions; and P. Kelemen for comments. S.V.S. thanks the Deutsche Forschungsgemeinschaft (DFG) SPP 1375 SAMPLE (SO 425/4) for support. The study by A.V.S. was funded by the Agence Nationale de la Recherche, France (Chair of Excellence Grant ANR-09-CEXC-003-01) and partly supported by a Gauss Professorship in Göttingen University, Germany, the Russian Foundation for Basic Research (09-05-01193a), a Russian President grant for leading Russian scientific schools (НШ-3919.2010.5) and an Earth Sciences Department of Russian Academy Grants.

Author information

Authors and Affiliations

Authors

Contributions

S.V.S. and A.V.S. provided major contributions to thermomechanical (S.V.S.) and petrological (A.V.S.) modelling, to the interpretation of data and to the writing of the paper. N.A.K. provided geological background and contributed to interpretation. A.G.P. contributed to the thermomechanical modelling at an initial stage. N.T.A. contributed to interpretation and writing of the paper. D.V.K. processed samples and performed the measurements. N.A.K., V.A.R. and Y.R.V. provided carefully selected samples. All authors contributed intellectually to the paper.

Corresponding authors

Correspondence to Stephan V. Sobolev or Alexander V. Sobolev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-6 with legends, additional references and Supplementary Tables 1-2. (PDF 3590 kb)

Supplementary Table 3

This table contains the compositions of olivine and host lavas. (XLS 2456 kb)

Supplementary Movie 1

This animated movie shows the evolution of the potential temperature (°C) in the model of the lithospheric destruction by the hot thermo-chemical plume. Model time in mln years is shown in the left corner. The solid curve marks the boundary of the depleted lithosphere. (AVI 3586 kb)

Supplementary Movie 2

This animated movie shows the evolution of the chemical composition of the mantle (content of the pyroxenitic/eclogitic component), in the model of the lithospheric destruction by the hot thermo-chemical plume. Model time in mln years is shown in the left corner. (AVI 4286 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sobolev, S., Sobolev, A., Kuzmin, D. et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316 (2011). https://doi.org/10.1038/nature10385

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10385

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing