Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Overcoming lability of extremely long alkane carbon–carbon bonds through dispersion forces

Subjects

Abstract

Steric effects in chemistry are a consequence of the space required to accommodate the atoms and groups within a molecule, and are often thought to be dominated by repulsive forces arising from overlapping electron densities (Pauli repulsion). An appreciation of attractive interactions such as van der Waals forces (which include London dispersion forces) is necessary to understand chemical bonding and reactivity fully. This is evident from, for example, the strongly debated origin of the higher stability of branched alkanes relative to linear alkanes1,2 and the possibility of constructing hydrocarbons with extraordinarily long C–C single bonds through steric crowding3. Although empirical bond distance/bond strength relationships have been established for C–C bonds4 (longer C–C bonds have smaller bond dissociation energies), these have no present theoretical basis5. Nevertheless, these empirical considerations are fundamental to structural and energetic evaluations in chemistry6,7, as summarized by Pauling8 as early as 1960 and confirmed more recently4. Here we report the preparation of hydrocarbons with extremely long C–C bonds (up to 1.704 Å), the longest such bonds observed so far in alkanes. The prepared compounds are unexpectedly stable—noticeable decomposition occurs only above 200 °C. We prepared the alkanes by coupling nanometre-sized, diamond-like, highly rigid structures known as diamondoids9. The extraordinary stability of the coupling products is due to overall attractive dispersion interactions between the intramolecular H•••H contact surfaces, as is evident from density functional theory computations with10 and without inclusion of dispersion corrections.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Hydrocarbons with exceptionally long C–C bonds.
Figure 2: Diamondoids and X-ray crystal structures of their coupling products with very long central C–C bonds.

References

  1. Grimme, S. Seemingly simple stereoelectronic effects in alkane isomers and the implications for Kohn–Sham density functional theory. Angew. Chem. Int. Ed. 45, 4460–4464 (2006)

    CAS  Article  Google Scholar 

  2. Wodrich, M. D. et al. The concept of protobranching and its many paradigm shifting implications for energy evaluations. Chem. Eur. J. 13, 7731–7744 (2007)

    CAS  Article  Google Scholar 

  3. de Silva, K. M. N. & Goodman, J. M. What is the smallest saturated acyclic alkane that cannot be made? J. Chem. Inf. Model. 45, 81–87 (2005)

    Article  Google Scholar 

  4. Zavitsas, A. A. The relation between bond lengths and dissociation energies of carbon-carbon bonds. J. Phys. Chem. A 107, 897–898 (2003)

    CAS  Article  Google Scholar 

  5. Kaupp, M., Metz, B. & Stoll, H. Breakdown of bond length-bond strength correlation: a case study. Angew. Chem. Int. Ed. 39, 4607–4609 (2000)

    CAS  Article  Google Scholar 

  6. Gordy, W. A relation between bond force constants, bond orders, bond lengths, and the electronegativities of the bonded atoms. J. Chem. Phys. 14, 305–320 (1946)

    ADS  CAS  Article  Google Scholar 

  7. Huggins, M. L. Atomic radii. IV. Dependence of interatomic distance on bond energy. J. Am. Chem. Soc. 75, 4126–4133 (1953)

    CAS  Article  Google Scholar 

  8. Pauling, L. The Nature of the Chemical Bond (Cornell Univ. Press, 1960)

    MATH  Google Scholar 

  9. Schwertfeger, H., Fokin, A. A. & Schreiner, P. R. Diamonds are a chemist’s best friend: diamondoid chemistry beyond adamantane. Angew. Chem. Int. Ed. 47, 1022–1036 (2008)

    CAS  Article  Google Scholar 

  10. Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463–1473 (2004)

    CAS  Article  Google Scholar 

  11. Tang, K.-T. & Toennies, J. P. Johannes Diderik van der Waals: a pioneer in the molecular sciences and Nobel prize winner in 1910. Angew. Chem. Int. Ed. 49, 9574–9579 (2010)

    CAS  Article  Google Scholar 

  12. Gronert, S. The folly of protobranching: turning repulsive interactions into attractive ones and rewriting the strain/stabilization energies of organic chemistry. Chem. Eur. J. 15, 5372–5382 (2009)

    CAS  Article  Google Scholar 

  13. Suzuki, T., Takeda, T., Kawai, H. & Fujiwara, K. Ultralong C–C bonds in hexaphenylethane derivatives. Pure Appl. Chem. 80, 547–553 (2008)

    CAS  Article  Google Scholar 

  14. Fritz, G., Wartanessian, S., Matern, E., Hönle, W. & von Schnering, H. G. Bildung siliciumorganischer Verbindungen. 85. Bildung, Reaktionen und Struktur des 1,1,3,3-tetramethyl-2,4-bis(trimethylsilyl)-1,3-disilabicyclo[1.1.0]butans. Z. Allg. Anorg. Chem. 475, 87–108 (1981)

    CAS  Article  Google Scholar 

  15. McBride, J. M. The hexaphenylethane riddle. Tetrahedron 30, 2009–2022 (1974)

    CAS  Article  Google Scholar 

  16. Vreven, T. & Morokuma, K. Prediction of the dissociation energy of hexaphenylethane using the ONIOM(MO: MO: MO) method. J. Phys. Chem. A 106, 6167–6170 (2002)

    CAS  Article  Google Scholar 

  17. Kahr, B., van Engen, D. & Mislow, K. Length of the ethane bond in hexaphenylethane and its derivatives. J. Am. Chem. Soc. 108, 8305–8307 (1986)

    CAS  Article  Google Scholar 

  18. Kammermeier, S., Jones, P. G. & Herges, R. [2+2] cycloaddition products of tetradehydrodianthracene: experimental and theoretical proof of extraordinary long C–C single bonds. Angew. Chem. Int. Edn Engl. 36, 1757–1760 (1997)

    CAS  Article  Google Scholar 

  19. Winiker, R., Beckhaus, H. D. & Rüchardt, C. Thermische Stabilität, Spannungsenthalpie und Struktur symmetrisch hexaalkylierter Ethane. Chem. Ber. 113, 3456–3476 (1980)

    CAS  Article  Google Scholar 

  20. Flamm-ter Meer, M. A., Beckhaus, H. D., Peters, K., von Schnering, H. G. & Rüchardt, C. Thermolabile hydrocarbons, XXVII. 2,3-di-1-adamantyl-2,3-dimethylbutane; long bonds and low thermal stability. Chem. Ber. 118, 4665–4673 (1985)

    CAS  Article  Google Scholar 

  21. Rüchardt, C. & Beckhaus, H. D. Towards an understanding of the carbon-carbon bond. Angew. Chem. Int. Edn Engl. 19, 429–440 (1980)

    Article  Google Scholar 

  22. Rüchardt, C. & Beckhaus, H.-D. Consequences of strain for the structure of aliphatic molecules. Angew. Chem. Int. Edn Engl. 24, 529–538 (1985)

    Article  Google Scholar 

  23. Boese, R., Weiss, H.-C. & Bläser, D. The melting point alternation in the short-chain n-alkanes: single-crystal X-ray analyses of propane at 30 K and of n-butane to n-nonane at 90 K. Angew. Chem. Int. Ed. 38, 988–992 (1999)

    CAS  Article  Google Scholar 

  24. Grimme, S. et al. When do interacting atoms form a chemical bond? Spectroscopic measurements and theoretical analyses of dideuteriophenanthrene. Angew. Chem. Int. Ed. 48, 2592–2595 (2009)

    CAS  Article  Google Scholar 

  25. Donohue, J. & Goodman, S. H. The crystal structure of adamantane: an example of a false minimum in least squares. Acta Crystallogr. 22, 352–354 (1967)

    CAS  Article  Google Scholar 

  26. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008)

    CAS  Article  Google Scholar 

  27. Takatani, T. & Sherrill, C. D. Performance of spin-component-scaled Moller-Plesset theory (SCS-MP2) for potential energy curves of noncovalent interactions. Phys. Chem. Chem. Phys. 9, 6106–6114 (2007)

    CAS  Article  Google Scholar 

  28. Maier, G., Pfriem, S., Schäfer, U. & Matusch, R. Tetra-tert-butyltetrahedrane. Angew. Chem. Int. Edn Engl. 17, 520–521 (1978)

    Article  Google Scholar 

  29. Wang, Y. Z. & Robinson, G. H. Unique homonuclear multiple bonding in main group compounds. Chem. Commun. (Camb.) 5201–5213 (2009)

  30. Dyker, C. A. & Bertrand, G. Soluble allotropes of main-group elements. Science 321, 1050–1051 (2008)

    CAS  Article  Google Scholar 

  31. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    ADS  CAS  Article  Google Scholar 

  32. Lee, C. T., Yang, W. T. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B 37, 785–789 (1988)

    ADS  CAS  Article  Google Scholar 

  33. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)

    CAS  Article  Google Scholar 

  34. Schwabe, T. & Grimme, S. Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects. Phys. Chem. Chem. Phys. 8, 4398–4401 (2006)

    CAS  Article  Google Scholar 

  35. Becke, A. D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J. Chem. Phys. 107, 8554–8560 (1997)

    ADS  CAS  Article  Google Scholar 

  36. Binkley, J. S., Pople, J. A. & Hehre, W. J. Split valence basis sets. J. Am. Chem. Soc. 102, 939–947 (1980)

    CAS  Article  Google Scholar 

  37. Frisch, M. J. et al. Gaussian 03 v.D.02 (Gaussian, Inc., 2003)

  38. Frisch, M. J. et al. Gaussian09 v.B.01 (Gaussian, Inc., 2009)

Download references

Acknowledgements

We thank S. Grimme for providing an implementation of his dispersion correction technique and for discussions. We are grateful for support from the Deutsche Forschungsgemeinschaft and the National Science Foundation of the USA, and in part from the Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under contract DE-AC02-76SF00515; the Ministry of Science and Education of Ukraine; and the Ukrainian State Basic Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

P.R.S. and A.A.F. formulated the initial working hypothesis and provided, analysed and interpreted all experimental data. L.V.C, P.A.G. and E.Yu.T. carried out the coupling experiments. H.H. recorded and analysed all NMR data. M.S. solved all X-ray structures. S.S. provided and interpreted the DSC and TGA analyses. J.E.P.D. and R.M.K.C. isolated and purified the diamondoids. The manuscript was written by P.R.S. and A.A.F.

Corresponding authors

Correspondence to Peter R. Schreiner or Andrey A. Fokin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

X-ray crystal structures have been deposited in the Cambridge Crystallographic Database under the deposition numbers CCDC 805315 (7•7), CCDC 806293 (6•8) and CCDC 806294 (7•8).

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-14 with legends, Supplementary Methods and Data, Supplementary Tables 1-3 and additional references. (PDF 5587 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schreiner, P., Chernish, L., Gunchenko, P. et al. Overcoming lability of extremely long alkane carbon–carbon bonds through dispersion forces. Nature 477, 308–311 (2011). https://doi.org/10.1038/nature10367

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10367

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing