Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Detectable radio flares following gravitational waves from mergers of binary neutron stars



Mergers of neutron-star/neutron-star binaries are strong sources of gravitational waves1,2,3. They can also launch subrelativistic and mildly relativistic outflows4,5,6,7,8 and are often assumed to be the sources of short γ-ray bursts9. An electromagnetic signature that persisted for weeks to months after the event would strengthen any future claim of a detection of gravitational waves10. Here we present results of calculations showing that the interaction of mildly relativistic outflows with the surrounding medium produces radio flares with peak emission at 1.4 gigahertz that persist at detectable (submillijansky) levels for weeks, out to a redshift of 0.1. Slower subrelativistic outflows produce flares detectable for years at 150 megahertz, as well as at 1.4 gigahertz, from slightly shorter distances. The radio transient RT 19870422 (ref. 11) has the properties predicted by our model, and its most probable origin is the merger of a compact neutron-star/neutron-star binary. The lack of radio detections usually associated with short γ-ray bursts does not constrain the radio transients that we discuss here (from mildly relativistic and subrelativistic outflows) because short γ-ray burst redshifts are typically >0.1 and the appropriate timescales (longer than weeks) have not been sampled.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Taylor, J. H. & Weisberg, J. M. A new test of general relativity — gravitational radiation and the binary pulsar PSR 1913+16. Astrophys. J. 253, 908–920 (1982)

    Article  ADS  Google Scholar 

  2. Esposito, L. W. & Harrison, E. R. Properties of the Hulse-Taylor binary pulsar system. Astrophys. J. 196, L1–L2 (1975)

    Article  ADS  Google Scholar 

  3. Wagoner, R. V. Test for the existence of gravitational radiation. Astrophys. J. 196, L63–L65 (1975)

    Article  ADS  Google Scholar 

  4. Rosswog, S., Davies, M. B., Thielemann, F. & Piran, T. Merging neutron stars: asymmetric systems. Astron. Astrophys. 360, 171–184 (2000)

    CAS  ADS  Google Scholar 

  5. Ruffert, M. & Janka, H. Coalescing neutron stars — a step towards physical models. III. Improved numerics and different neutron star masses and spins. Astron. Astrophys. 380, 544–577 (2001)

    CAS  Article  ADS  Google Scholar 

  6. Yamamoto, T., Shibata, M. & Taniguchi, K. Simulating coalescing compact binaries by a new code (SACRA). Phys. Rev. D. 78, 064054 (2008)

    Article  ADS  Google Scholar 

  7. Rezzolla, L., Baiotti, L., Giacomazzo, B., Link, D. & Font, J. A. Accurate evolutions of unequal-mass neutron-star binaries: properties of the torus and short GRB engines. Class. Quantum Grav. 27, 114105 (2010)

    Article  ADS  Google Scholar 

  8. Kiuchi, K., Sekiguchi, Y., Shibata, M. & Taniguchi, K. Exploring binary-neutron-star-merger scenario of short-gamma-ray bursts by gravitational-wave observation. Phys. Rev. Lett. 104, 141101 (2010)

    Article  ADS  Google Scholar 

  9. Eichler, D., Livio, M., Piran, T. & Schramm, D. N. Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars. Nature 340, 126–128 (1989)

    Article  ADS  Google Scholar 

  10. Kochanek, C. S. & Piran, T. Gravitational waves and gamma-ray bursts. Astrophys. J. 417, L17–L20 (1993)

    Article  ADS  Google Scholar 

  11. Bower, G. C. et al. Submillijansky transients in archival radio observations. Astrophys. J. 666, 346–360 (2007)

    CAS  Article  ADS  Google Scholar 

  12. Smith, J. R. LIGO Scientific Collaboration.. The path to the enhanced and advanced LIGO gravitational-wave detectors. Class. Quantum Grav. 26, 114013 (2009)

    Article  ADS  Google Scholar 

  13. Li, L. & Paczyn´ski, B. Transient events from neutron star mergers. Astrophys. J. 507, L59–L62 (1998)

    Article  ADS  Google Scholar 

  14. Metzger, B. D. et al. Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon. Not. R. Astron. Soc. 406, 2650–2662 (2010)

    Article  ADS  Google Scholar 

  15. Hansen, B. M. S. & Lyutikov, M. Radio and X-ray signatures of merging neutron stars. Mon. Not. R. Astron. Soc. 322, 695–701 (2001)

    Article  ADS  Google Scholar 

  16. Moortgat, J. & Kuijpers, J. Gravitational waves in magnetized relativistic plasmas. Phys. Rev. D 70, 023001 (2004)

    Article  ADS  Google Scholar 

  17. Pshirkov, M. S. & Postnov, K. A. Radio precursors to neutron star binary mergings. Astrophys. Space Sci. 330, 13–18 (2010)

    CAS  Article  ADS  Google Scholar 

  18. Rosswog, S. Mergers of neutron star-black hole binaries with small mass ratios: nucleosynthesis, gamma-ray bursts, and electromagnetic transients. Astrophys. J. 634, 1202–1213 (2005)

    CAS  Article  ADS  Google Scholar 

  19. Levinson, A. General relativistic, neutrino-assisted magnetohydrodynamic winds-theory and application to gamma-ray bursts. I. Schwarzschild geometry. Astrophys. J. 648, 510–522 (2006)

    CAS  Article  ADS  Google Scholar 

  20. Metzger, B. D., Piro, A. L. & Quataert, E. Time-dependent models of accretion discs formed from compact object mergers. Mon. Not. R. Astron. Soc. 390, 781–797 (2008)

    CAS  ADS  Google Scholar 

  21. Dessart, L., Ott, C. D., Burrows, A., Rosswog, S. & Livne, E. Neutrino signatures and the neutrino-driven wind in binary neutron star mergers. Astrophys. J. 690, 1681–1705 (2009)

    CAS  Article  ADS  Google Scholar 

  22. Chevalier, R. A. Synchrotron self-absorption in radio supernovae. Astrophys. J. 499, 810–819 (1998)

    Article  ADS  Google Scholar 

  23. Chevalier, R. A. & Fransson, C. Circumstellar emission from Type Ib and Ic supernovae. Astrophys. J. 651, 381–391 (2006)

    CAS  Article  ADS  Google Scholar 

  24. Frail, D. A., Waxman, E. & Kulkarni, S. R. A 450 day light curve of the radio afterglow of GRB 970508: fireball calorimetry. Astrophys. J. 537, 191–204 (2000)

    Article  ADS  Google Scholar 

  25. Frail, D. A. et al. Accurate calorimetry of GRB 030329. Astrophys. J. 619, 994–998 (2005)

    CAS  Article  ADS  Google Scholar 

  26. Rhoads, J. E. How to tell a jet from a balloon: a proposed test for beaming in gamma-ray bursts. Astrophys. J. 487, L1–L4 (1997)

    Article  ADS  Google Scholar 

  27. Soderberg, A. M. & Frail, D. A. GRB060313: radio observations. GCN Circ. 4884, (2006)

  28. van der Horst, A. J. GRB 060801: WSRT radio observations. GCN Circ. 5390, (2006)

  29. Wieringa, M. H., Chandra, P. & Frail, D. A. ATCA radio observations of short hard burst GRB 071112B. GCN Circ. 7095, (2007)

  30. Wen, L. & Chen, Y. Geometrical expression for the angular resolution of a network of gravitational-wave detectors. Phys. Rev. D 81, 082001 (2010)

    Article  ADS  Google Scholar 

Download references


We thank D. Frail, S. Kulkarni, A. Levinson, A. MacFadyen, E. Ofek and S. Rosswog for discussions. This research was supported by an ERC advanced research grant, by the Israeli Center for Excellence for High Energy Astrophysics, by the ISF (grant No. 174/08) and by an IRG grant.

Author information

Authors and Affiliations



Both authors contributed equally.

Corresponding authors

Correspondence to Ehud Nakar or Tsvi Piran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-3 and additional references. (PDF 135 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nakar, E., Piran, T. Detectable radio flares following gravitational waves from mergers of binary neutron stars. Nature 478, 82–84 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing