Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila

Abstract

Overexpression of sirtuins (NAD+-dependent protein deacetylases) has been reported to increase lifespan in budding yeast (Saccharomyces cerevisiae), Caenorhabditis elegans and Drosophila melanogaster1,2,3. Studies of the effects of genes on ageing are vulnerable to confounding effects of genetic background4. Here we re-examined the reported effects of sirtuin overexpression on ageing and found that standardization of genetic background and the use of appropriate controls abolished the apparent effects in both C. elegans and Drosophila. In C. elegans, outcrossing of a line with high-level sir-2.1 overexpression1 abrogated the longevity increase, but did not abrogate sir-2.1 overexpression. Instead, longevity co-segregated with a second-site mutation affecting sensory neurons. Outcrossing of a line with low-copy-number sir-2.1 overexpression2 also abrogated longevity. A Drosophila strain with ubiquitous overexpression of dSir2 using the UAS-GAL4 system was long-lived relative to wild-type controls, as previously reported3, but was not long-lived relative to the appropriate transgenic controls, and nor was a new line with stronger overexpression of dSir2. These findings underscore the importance of controlling for genetic background and for the mutagenic effects of transgene insertions in studies of genetic effects on lifespan. The life-extending effect of dietary restriction on ageing in Drosophila has also been reported to be dSir2 dependent3. We found that dietary restriction increased fly lifespan independently of dSir2. Our findings do not rule out a role for sirtuins in determination of metazoan lifespan, but they do cast doubt on the robustness of the previously reported effects of sirtuins on lifespan in C. elegans and Drosophila.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Longevity of LG100 and NL3909 is not attributable to sir-2.1 overexpression in C. elegans.
Figure 2: Absence of effects of dSir2 on lifespan in Drosophila.

References

  1. Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Viswanathan, M., Kim, S. K., Berdichevsky, A. & Guarente, L. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev. Cell 9, 605–615 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. Rogina, B. & Helfand, S. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl Acad. Sci. USA 101, 15998–16003 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Partridge, L. & Gems, D. Benchmarks for ageing studies. Nature 450, 165–167 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berdichevsky, A., Viswanathan, M., Horvitz, H. R. & Guarente, L. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125, 1165–1177 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. Guarente, L. Sirtuins in aging and disease. Cold Spring Harb. Symp. Quant. Biol. 72, 483–488 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. Mair, W. & Dillin, A. Aging and survival: the genetics of life span extension by dietary restriction. Annu. Rev. Biochem. 77, 727–754 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. Lin, S., Defossez, P. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Wang, Y. & Tissenbaum, H. A. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech. Ageing Dev. 127, 48–56 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. Haigis, M. C. & Sinclair, D. A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253–295 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garber, K. A mid-life crisis for aging theory. Nature Biotechnol. 26, 371–374 (2008)

    Article  CAS  Google Scholar 

  13. Kaeberlein, M. Lessons on longevity from budding yeast. Nature 464, 513–519 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kenyon, C. The genetics of ageing. Nature 464, 504–512 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Howitz, K. T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Milne, J. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–716 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaeberlein, M. et al. Substrate-specific activation of sirtuins by resveratrol. J. Biol. Chem. 280, 17038–17045 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. Borra, M., Smith, B. & Denu, J. Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem. 280, 17187–17195 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. Beher, D. et al. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem. Biol. Drug Des. 74, 619–624 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. Pacholec, M. et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem. 285, 8340–8351 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hedgecock, E., Culotti, J., Thomson, J. & Perkins, L. Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev. Biol. 111, 158–170 (1985)

    Article  CAS  PubMed  Google Scholar 

  22. Apfeld, J. & Kenyon, C. Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402, 804–809 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Brand, A. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993)

    CAS  PubMed  Google Scholar 

  24. Parker, J. A. et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nature Genet. 37, 349–350 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. Patel, D. S. et al. Clustering of genetically defined allele classes in the Caenorhabditis elegans DAF-2 insulin/IGF-1 receptor. Genetics 178, 931–946 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wood, J. et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686–689 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Bass, T., Weinkove, D., Houthoofd, K., Gems, D. & Partridge, L. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech. Ageing Dev. 128, 546–552 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. Gems, D. et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 150, 129–155 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Borra, M. T. & Denu, J. M. Quantitative assays for characterization of the Sir2 family of NAD+-dependent deacetylases. Methods Enzymol. 376, 171–187 (2003)

    Article  Google Scholar 

  30. Grandison, R. C., Wong, R., Bass, T. M., Partridge, L. & Piper, M. D. Effect of a standardised dietary restriction protocol on multiple laboratory strains of Drosophila melanogaster. PLoS ONE 4, e4067 (2009)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  31. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sulston, J. & Hodgkin, J. in The Nematode Caenorhabditis elegans (ed. Wood, W. B. ) 587–606 (Cold Spring Harbor, 1988)

    Google Scholar 

  33. Kamath, R. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Greiss, S., Hall, J., Ahmed, S. & Gartner, A. C. elegans SIR-2.1 translocation is linked to a proapoptotic pathway parallel to cep-1/p53 during DNA damage-induced apoptosis. Genes Dev. 22, 2831–2842 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Newman, B. L., Lundblad, J. R., Chen, Y. & Smolik, S. M. A Drosophila homologue of Sir2 modifies position-effect variegation but does not affect life span. Genetics 162, 1675–1685 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Astrom, S. U., Cline, T. W. & Rine, J. The Drosophila melanogaster sir2+gene is nonessential and has only minor effects on position-effect variegation. Genetics 163, 931–937 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Gartner for providing an antibody against C. elegans SIR-2.1; D. Chen, P. Kapahi, S. Pletcher and D. Skorupa for providing data; S. S. Lee for permission to cite unpublished results; S. Helfand and J. Rine for providing fly strains; W. Mair for performing preliminary trials and R. Baumeister for useful discussion. Some nematode strains were provided by the Caenorhabditis Genetics Center, which is funded by the National Institutes of Health National Center for Research Resources. We acknowledge funding from the European Union (FP6-036894 to C.B., D.G., L.P. and S.V. and FP6-518230 to D.G. and C.S.), the Hungarian Science Foundation and Norway Grants (NNF-78794 to C.S.), INSERM and ANR, Paris (R.V., A.-M.O. and C.N.), the National Institutes of Health (CA129132 to A.B., R01AG031108 to M.K. and T32AG000057 to G.L.S.) and the Wellcome Trust (Strategic Award to C.A., F.C., D.G., L.P. and M.R.). C.S. is a Bolyai Research Scholar of the Hungarian Academy of Sciences and M.K. is an Ellison Medical Foundation New Scholar in Aging.

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived by D.G. and L.P. and the experiments were designed by A.B., C.B., F.C., D.G., K.H., M.K., J.J.M., C.N., L.P., C.S. and S.V. The experiments were performed and analysed by C.A., D.A., C.B., F.C., J.J.M., M.G., M.H., A.-M.O., M.D.P., M.R., G.L.S., M.S., G.V., R.P.V.-M., S.V. and V.L. The manuscript was written by C.B., F.C., D.G., L.P. and S.V.

Corresponding author

Correspondence to David Gems.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-12 with legends, Supplementary Tables 1-7 and Supplementary References. (PDF 976 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Burnett, C., Valentini, S., Cabreiro, F. et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477, 482–485 (2011). https://doi.org/10.1038/nature10296

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10296

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing