A two-step chemical mechanism for ribosome-catalysed peptide bond formation


The chemical step of natural protein synthesis, peptide bond formation, is catalysed by the large subunit of the ribosome. Crystal structures have shown that the active site for peptide bond formation is composed entirely of RNA1. Recent work has focused on how an RNA active site is able to catalyse this fundamental biological reaction at a suitable rate for protein synthesis. On the basis of the absence of important ribosomal functional groups2 , lack of a dependence on pH3, and the dominant contribution of entropy to catalysis4, it has been suggested that the role of the ribosome is limited to bringing the substrates into close proximity. Alternatively, the importance of the 2′-hydroxyl of the peptidyl-transfer RNA5 and a Brønsted coefficient near zero6 have been taken as evidence that the ribosome coordinates a proton-transfer network. Here we report the transition state of peptide bond formation, based on analysis of the kinetic isotope effect at five positions within the reaction centre of a peptidyl-transfer RNA mimic. Our results indicate that in contrast to the uncatalysed reaction, formation of the tetrahedral intermediate and proton transfer from the nucleophilic nitrogen both occur in the rate-limiting step. Unlike in previous proposals, the reaction is not fully concerted; instead, breakdown of the tetrahedral intermediate occurs in a separate fast step. This suggests that in addition to substrate positioning, the ribosome is contributing to chemical catalysis by changing the rate-limiting transition state.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Proposed reaction mechanisms.
Figure 2: Histograms of measured isotope effects.
Figure 3: Kinetic isotope effects.
Figure 4: Structures of the substrates and transition states for peptide bond formation shown in similar orientations.


  1. 1

    Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Erlacher, M. D. et al. Chemical engineering of the peptidyl transferase center reveals an important role of the 2′-hydroxyl group of A2451. Nucleic Acids Res. 33, 1618–1627 (2005)

    CAS  Article  Google Scholar 

  3. 3

    Bieling, P., Beringer, M., Adio, S. & Rodnina, M. V. Peptide bond formation does not involve acid-base catalysis by ribosomal residues. Nature Struct. Mol. Biol. 13, 423–428 (2006)

    CAS  Article  Google Scholar 

  4. 4

    Sievers, A., Beringer, M., Rodnina, M. V. & Wolfenden, R. The ribosome as an entropy trap. Proc. Natl Acad. Sci. USA 101, 7897–7901 (2004)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Zaher, H. S., Shaw, J. J., Strobel, S. A. & Green, R. The 2′-OH group of the peptidyl-tRNA stabilizes an active conformation of the ribosomal PTC. EMBO J. 30, 2445–2453 (2011)

    CAS  Article  Google Scholar 

  6. 6

    Kingery, D. A. et al. An uncharged amine in the transition state of the ribosomal peptidyl transfer reaction. Chem. Biol. 15, 493–500 (2008)

    CAS  Article  Google Scholar 

  7. 7

    Satterthwait, A. C. & Jencks, W. P. Mechanism of the aminolysis of acetate esters. J. Am. Chem. Soc. 96, 7018–7031 (1974)

    CAS  Article  Google Scholar 

  8. 8

    Dorner, S., Panuschka, C., Schmid, W. & Barta, A. Mononucleotide derivatives as ribosomal P-site substrates reveal an important contribution of the 2′-OH to activity. Nucleic Acids Res. 31, 6536–6542 (2003)

    CAS  Article  Google Scholar 

  9. 9

    Schmeing, T. M., Huang, K. S., Kitchen, D. E., Strobel, S. A. & Steitz, T. A. Structural insights into the roles of water and the 2′ hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol. Cell 20, 437–448 (2005)

    CAS  Article  Google Scholar 

  10. 10

    Wallin, G. & Åqvist, J. The transition state for peptide bond formation reveals the ribosome as a water trap. Proc. Natl Acad. Sci. USA 107, 1888–1893 (2010)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Wang, Q., Gao, J., Liu, Y. & Liu, C. Validating a new proton shuttle reaction pathway for formation of the peptide bond in ribosomes: a theoretical investigation. Chem. Phys. Lett. 501, 113–117 (2010)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Rangelov, M. A., Petrova, G. P., Yomtova, V. M. & Vayssilov, G. N. Catalytic role of vicinal OH in ester aminolysis: proton shuttle versus hydrogen bond stabilization. J. Org. Chem. 75, 6782–6792 (2010)

    CAS  Article  Google Scholar 

  13. 13

    Huang, K. S., Carrasco, N., Pfund, E. & Strobel, S. A. Transition state chirality and role of the vicinal hydroxyl in the ribosomal peptidyl transferase reaction. Biochemistry 47, 8822–8827 (2008)

    CAS  Article  Google Scholar 

  14. 14

    Cleland, W. W. Isotope effects: determination of enzyme transition state structure. Enzyme Kinetics Mech. D 249, 341–373 (1995)

    CAS  Google Scholar 

  15. 15

    Zhong, M. & Strobel, S. A. Synthesis of the ribosomal P-site substrate CCA-pcb. Org. Lett. 8, 55–58 (2006)

    CAS  Article  Google Scholar 

  16. 16

    Zhong, M. & Strobel, S. A. Synthesis of isotopically labeled P-site substrates for the ribosomal peptidyl transferase reaction. J. Org. Chem. 73, 603–611 (2008)

    CAS  Article  Google Scholar 

  17. 17

    Monro, R. E. & Marcker, K. A. Ribosome-catalysed reaction of puromycin with a formylmethionine-containing oligonucleotide. J. Mol. Biol. 25, 347–350 (1967)

    CAS  Article  Google Scholar 

  18. 18

    Seila, A. C., Okuda, K., Nunez, S., Seila, A. F. & Strobel, S. A. Kinetic isotope effect analysis of the ribosomal peptidyl transferase reaction. Biochemistry 44, 4018–4027 (2005)

    CAS  Article  Google Scholar 

  19. 19

    Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Unrau, P. J. & Bartel, D. P. An oxocarbenium-ion intermediate of a ribozyme reaction indicated by kinetic isotope effects. Proc. Natl Acad. Sci. USA 100, 15393–15397 (2003)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Hiller, D. A., Zhong, M., Singh, V. & Strobel, S. A. Transition states of uncatalyzed hydrolysis and aminolysis reactions of a ribosomal P-site substrate determined by kinetic isotope effects. Biochemistry 49, 3868–3878 (2010)

    CAS  Article  Google Scholar 

  22. 22

    O'Leary, M. H. & Marlier, J. F. Heavy-atom isotope effects on the alkaline hydrolysis and hydrazinolysis of methyl benzoate. J. Am. Chem. Soc. 101, 3300–3306 (1979)

    CAS  Article  Google Scholar 

  23. 23

    Sawyer, C. B. & Kirsch, J. F. Kinetic isotope effects for reactions of methyl formate-methoxyl-18O. J. Am. Chem. Soc. 95, 7375–7381 (1973)

    CAS  Article  Google Scholar 

  24. 24

    Marlier, J. F., Haptonstall, B. A., Johnson, A. J. & Sacksteder, K. A. Heavy-atom isotope effects on the hydrazinolysis of methyl formate. J. Am. Chem. Soc. 119, 8838–8842 (1997)

    CAS  Article  Google Scholar 

  25. 25

    Singleton, D. A. & Merrigan, S. R. Resolution of conflicting mechanistic observations in ester aminolysis. A warning on the qualitative prediction of isotope effects for reactive intermediates. J. Am. Chem. Soc. 122, 11035–11036 (2000)

    CAS  Article  Google Scholar 

  26. 26

    Hogg, J. L., Rodgers, J., Kovach, I. & Schowen, R. L. Kinetic isotope-effect probes of transition-state structure. Vibrational analysis of model transition states for carbonyl addition. J. Am. Chem. Soc. 102, 79–85 (1980)

    CAS  Article  Google Scholar 

  27. 27

    Gawlita, E. et al. H-Bonding in alcohols is reflected in the Cα−H bond strength: variation of C−D vibrational frequency and fractionation factor. J. Am. Chem. Soc. 122, 11660–11669 (2000)

    CAS  Article  Google Scholar 

  28. 28

    Inward, P. W. & Jencks, W. P. The reactivity of nucleophilic reagents with furoyl-chymotrypsin. J. Biol. Chem. 240, 1986–1996 (1965)

    CAS  PubMed  Google Scholar 

  29. 29

    Zeeberg, B. & Caplow, M. Transition state charge distribution in reactions of an acetyltyrosylchymotrypsin intermediate. J. Biol. Chem. 248, 5887–5891 (1973)

    CAS  PubMed  Google Scholar 

  30. 30

    Anisimov, V. & Paneth, P. ISOEFF98. A program for studies of isotope effects using Hessian modifications. J. Math. Chem. 26, 75–86 (1999)

    CAS  Article  Google Scholar 

Download references


We thank J. Klinman and D. Singleton for critical reading of the manuscript, and members of the S.A.S. laboratory for discussion. This work was supported by an NIH postdoctoral fellowship (D.A.H.), a Brown-Coxe fellowship (V.S.) and an NIH grant (GM54839).

Author information




D.A.H. and S.A.S. devised experiments, M.Z. synthesized substrates, D.A.H. collected and analysed isotope effect data, V.S. calculated theoretical isotope effects, and D.A.H. and S.A.S. wrote the paper.

Corresponding author

Correspondence to Scott A. Strobel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Tables

The file contains Supplementary Tables 1-3. (PDF 73 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hiller, D., Singh, V., Zhong, M. et al. A two-step chemical mechanism for ribosome-catalysed peptide bond formation. Nature 476, 236–239 (2011). https://doi.org/10.1038/nature10248

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing