Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Indian and African plate motions driven by the push force of the Réunion plume head

Abstract

Mantle plumes are thought to play an important part in the Earth’s tectonics, yet it has been difficult to isolate the effect that plumes have on plate motions. Here we analyse the plate motions involved in two apparently disparate events—the unusually rapid motion of India between 67 and 52 million years ago and a contemporaneous, transitory slowing of Africa’s motion—and show that the events are coupled, with the common element being the position of the Indian and African plates relative to the location of the Réunion plume head. The synchroneity of these events suggests that they were both driven by the force of the Réunion plume head. The recognition of this plume force has substantial tectonic implications: the speed-up and slowdown of India, the possible cessation of convergence between Africa and Eurasia in the Palaeocene epoch and the enigmatic bends of the fracture zones on the Southwest Indian Ridge can all be attributed to the Réunion plume.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Tectonic reconstruction of Indian Ocean at 63.1 Myr ago.
Figure 2: Constraints on the motion of India.
Figure 3: Constraints on the motion of adjacent ridges.
Figure 4: Constraints on Africa’s absolute motion.
Figure 5: Explanation of stage pole swing.
Figure 6: Effect of the plume head force on absolute motion of Africa.

References

  1. 1

    Gradstein, F. M. et al. A Geologic Time Scale 2004 (eds Gradstein, F. M., Ogg, J. G. & Smith, A. G. ) (Cambridge University Press, 2004)

  2. 2

    McKenzie, D. P. & Sclater, J. G. The evolution of the Indian Ocean since the Late Cretaceous. Geophys. J. R. Astron. Soc. 25, 437–528 (1971)

    ADS  Article  Google Scholar 

  3. 3

    Sclater, J. G. & Fisher, R. L. Evolution of the east central Indian Ocean, with emphasis on the tectonic setting of the Ninetyeast Ridge. Geol. Soc. Am. Bull. 85, 683–702 (1974)

    ADS  Article  Google Scholar 

  4. 4

    Besse, J. & Courtillot, V. Paleogeographic maps of the Indian Ocean bordering continents since the Upper Jurassic. J. Geophys. Res. 93, 11791–11808 (1988)

    ADS  Article  Google Scholar 

  5. 5

    Klootwijk, C. T., Gee, J. S., Peirce, J. W. & Smith, G. M. An early India–Asia contact: paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121. Geology 20, 395–398 (1992)

    ADS  Article  Google Scholar 

  6. 6

    Acton, G. D. in Indian Subcontinent and Gondwana: A Palaeomagnetic and Rock Magnetic Perspective (eds Radhakrishna, T. & Piper, J. D. A. ) Vol. 44, 129–175 (Mem. Geol. Soc. India, 1999)

    Google Scholar 

  7. 7

    Jurdy, D. M. & Gordon, R. G. Global plate motions relative to the hotspots 64 to 56 Ma. J. Geophys. Res. 89, 9927–9936 (1984)

    ADS  Article  Google Scholar 

  8. 8

    Forsyth, D. & Uyeda, S. On the relative importance of the driving forces of plate motion. Geophys. J. R. Astron. Soc. 43, 163–200 (1975)

    ADS  Article  Google Scholar 

  9. 9

    Dercourt, J. et al. Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophysics 123, 241–315 (1986)

    ADS  Article  Google Scholar 

  10. 10

    Dewey, J. F., Helman, M. L., Turco, E., Hutton, D. H. W. & Knott, S. D. in Alpine Tectonics (eds Coward, M. P., Dietrich, D. & Park, R. G. ) Vol. 45, 265–283 (Geol. Soc. Lond. Spec. Publ., 1989)

    Google Scholar 

  11. 11

    Srivastava, S. P. & Tapscott, C. R. in The Western North Atlantic Region DNAG Vol. M (eds Vogt, P. R. & Tucholke, B. E. ) 379–404 (Geological Society of America, 1986)

    Google Scholar 

  12. 12

    McQuarrie, N., Stock, J. M., Verdel, C. & Wernicke, B. P. Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys. Res. Lett. 30 2036 10.1029/2003GL017992 (2003)

    ADS  Article  Google Scholar 

  13. 13

    Duncan, R. A. & Richards, M. A. Hotspots, mantle plumes, flood basalts, and true polar wander. Rev. Geophys. 29, 31–50 (1991)

    ADS  Article  Google Scholar 

  14. 14

    Courtillot, V. E. et al. Deccan flood basalts at the Cretaceous/Tertiary boundary? Earth Planet. Sci. Lett. 80, 361–374 (1986)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Vandamme, D., Courtillot, V., Besse, J. & Montigny, R. Paleomagnetism and age determinations of the Deccan traps (India): results of a Nagpur–Bombay traverse and review of earlier work. Rev. Geophys. Space Phys. 29, 159–190 (1991)

    Article  Google Scholar 

  16. 16

    Pande, K. Age and duration of the Deccan Traps, India: a review of radiometric and paleomagnetic constraints. Proc. Indiana Acad. Sci. 111, 115–123 (2002)

    ADS  CAS  Google Scholar 

  17. 17

    Chenet, A. L. Quidelleur, X. Fluteau, F., Courtillot, V. & Bajpai, S. 40K–40Ar dating of the Main Deccan large igneous province: further evidence of KTB age and short duration. Earth Planet. Sci. Lett. 263, 1–15 (2007)

    ADS  CAS  Article  Google Scholar 

  18. 18

    White, R. Melt production rates in mantle plumes. Phil. Trans. R. Soc. Lond. A 342, 137–153 (1993)

    ADS  Google Scholar 

  19. 19

    Tiwari, V. M., Grevemeyer, I., Singh, B. & Phipps Morgan, J. Variation of effective elastic thickness and melt production along the Deccan–Réunion hotspot track. Earth Planet. Sci. Lett. 264, 9–21 (2007)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Norton, I. O. & Sclater, J. G. A model for the evolution of the Indian Ocean and the breakup of Gondwanaland. J. Geophys. Res. 84, 6803–6830 (1979)

    ADS  Article  Google Scholar 

  21. 21

    White, R. S. & McKenzie, D. P. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res. 94, 7685–7729 (1989)

    ADS  Article  Google Scholar 

  22. 22

    Dyment, J. Structure et evolution de la lithosphere oceanique dans l'ocean Indien: apport des anomalies magnetiques. Thesis (Univ. Louis Pasteur, 1991)

  23. 23

    Morgan, W. J. Deep mantle convective plumes and plate motions. Am. Assoc. Pet. Geol. Bull. 56, 203–213 (1972)

    Google Scholar 

  24. 24

    Larson, R. L. Latest pulse of Earth: evidence for a mid-Cretaceous superplume. Geology 19, 547–550 (1991)

    ADS  Article  Google Scholar 

  25. 25

    Morgan, J. P., Morgan, W. J., Zhang, Y.-S. & Smith, W. H. F. Observational hints for a plume-fed, suboceanic asthenosphere and its role in mantle convection. J. Geophys. Res. 100, 12753–12767 (1995)

    ADS  Article  Google Scholar 

  26. 26

    Cande, S. C., Patriat, P. & Dyment, J. Motion between the Indian, Antarctica and African plates in the early Cenozoic. Geophys. J. Int. 183, 127–149 (2010)

    ADS  Article  Google Scholar 

  27. 27

    Molnar, P., Pardo-Casas, F. & Stock, J. The Cenozoic and Late Cretaceous evolution of the Indian Ocean: uncertainties in the reconstructed positions of the Indian, African and Antarctic plates. Basin Res. 1, 23–40 (1988)

    ADS  Article  Google Scholar 

  28. 28

    Royer, J. Y. & Sandwell, D. T. Evolution of the Eastern Indian Ocean since the Late Cretaceous: constraints from Geosat altimetry. J. Geophys. Res. 94, 13755–13782 (1989)

    ADS  Article  Google Scholar 

  29. 29

    Muller, R. D., Royer, J.-Y., Cande, S. C., Roest, W. R. & Maschenkov, S. in Caribbean Basins (ed. Mann, P. ) Vol. 4, 33–59 (Elsevier Science, 1999)

    Book  Google Scholar 

  30. 30

    Nankivell, A. P. Tectonic evolution of the Southern Ocean between Antarctica, South America and Africa over the last 84 Ma. PhD thesis (University of Oxford, 1997)

  31. 31

    Royer, J.-Y., Patriat, P., Bergh, H. W. & Scotese, C. R. Evolution of the Southwest Indian Ridge from the Late Cretaceous (Anomaly 34) to the Middle Eocene (Anomaly 20). Tectonophysics 155, 235–260 (1988)

    ADS  Article  Google Scholar 

  32. 32

    Müller, R. D., Royer, J.-Y. & Lawver, L. A. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology 21, 275–278 (1993)

    Article  Google Scholar 

  33. 33

    Torsvik, T. H., Müller, R. D., Van der Voo, R., Steinberger, B. & Gaina, C. Global plate motion frames: toward a unified model. Rev. Geophys. 46, RG3004 (2008)

    ADS  Article  Google Scholar 

  34. 34

    Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hotspot tracks: plume heads and tails. Science 246, 103–107 (1989)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Harper, J. F. Plate dynamics: Caribbean map corrections and hotspot push. Geophys. J. Int. 100, 423–431 (1990)

    ADS  Article  Google Scholar 

  36. 36

    van Hinsbergen, D., Steinberger, B., Doubrovine, P. & Gassmoller, R. Acceleration and deceleration of India-Asia convergence since the Cretaceous: roles of mantle plumes and continental collision. J. Geophys. Res. doi:10.1029/2010JB008051. (in the press)

  37. 37

    Capitanio, F. A. & Faccenna, C. &. Funiciello, R. Opening of Sirte Basin: result of slab avalanche? Earth Planet. Sci. Lett. 285, 210–216 (2009)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Molnar, P. & Tapponnier, P. Cenozoic tectonics of Asia: effects of a continental collision. Science 189, 419–426 (1975)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Patriat, P. & Achache, J. India-Eurasia collision chronology has implications for shortening and driving mechanism of plates. Nature 311, 615–621 (1984)

    ADS  Article  Google Scholar 

  40. 40

    Garzanti, E., Baud, A. & Mascle, G. Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India). Geodin. Acta 1, 297–312 (1987)

    Article  Google Scholar 

  41. 41

    Barker, P. F. The history of ridge-crest offset at the Falkland-Agulhas fracture zone from a small-circle geophysical profile. Geophys. J. R. Astron. Soc. 59, 131–145 (1979)

    ADS  Article  Google Scholar 

  42. 42

    Livermore, R. A. & Woollett, R. W. Seafloor spreading in the Weddell Sea and Southwest Atlantic since the Late Cretaceous. Earth Planet. Sci. Lett. 117, 475–495 (1993)

    ADS  Article  Google Scholar 

  43. 43

    Tikku, A. A. & Cande, S. C. The oldest magnetic anomalies in the Australian-Antarctic Basin: are they isochrons? J. Geophys. Res. 104, 661–677 (1999)

    ADS  Article  Google Scholar 

  44. 44

    Sharp, W. D. & Clague, D. A. 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific plate motion. Science 313, 1281–1284 (2006)

    ADS  CAS  Article  Google Scholar 

  45. 45

    Raymond, C. A., Stock, J. M. & Cande, S. C. History and Dynamics of Global Plate MotionsIn (eds Richards, M. A., Gordon, R. G. & van der Hilst, R. D. ) AGU Monogr. 121, 359–376 (2000)

  46. 46

    Steinberger, B., Sutherland, R. & O’Connell, R. J. Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature 430, 167–173 (2004)

    ADS  CAS  Article  Google Scholar 

  47. 47

    Tarduno, J., Bunge, H.-P., Sleep, N. & Hansen, U. The bent Hawaiian-Emperor hotspot track: inheriting the mantle wind. Science 324, 50–53 (2009)

    ADS  CAS  Article  Google Scholar 

  48. 48

    Whittaker, J. M. et al. Major Australian-Antarctic plate reorganization at Hawaiian-Emperor bend time. Science 318, 83–86 (2007)

    ADS  CAS  Article  Google Scholar 

  49. 49

    Sandwell, D. T. & Smith, W. H. F. Marine gravity anomaly from Geosat and ERS-1 satellite altimetry. J. Geophys. Res. 102, 10039–10054 (1997)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Stock for discussions. R. Gordon and D. Müller made comments on the manuscript. Funding was provided by NSF grant ANT-0944345 (to S.C.C.).

Author information

Affiliations

Authors

Contributions

Both authors contributed equally to the ideas and design of the research. S.C.C. developed the new methodology and performed kinematic analysis. Both authors contributed to writing the paper.

Corresponding author

Correspondence to Steven C. Cande.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figure 1 and legend and Supplementary Tables 1-5. (PDF 988 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cande, S., Stegman, D. Indian and African plate motions driven by the push force of the Réunion plume head. Nature 475, 47–52 (2011). https://doi.org/10.1038/nature10174

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links