On the role of the Agulhas system in ocean circulation and climate


The Atlantic Ocean receives warm, saline water from the Indo-Pacific Ocean through Agulhas leakage around the southern tip of Africa. Recent findings suggest that Agulhas leakage is a crucial component of the climate system and that ongoing increases in leakage under anthropogenic warming could strengthen the Atlantic overturning circulation at a time when warming and accelerated meltwater input in the North Atlantic is predicted to weaken it. Yet in comparison with processes in the North Atlantic, the overall Agulhas system is largely overlooked as a potential climate trigger or feedback mechanism. Detailed modelling experiments—backed by palaeoceanographic and sustained modern observations—are required to establish firmly the role of the Agulhas system in a warming climate.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Agulhas leakage affected by westerly winds and position of subtropical front.
Figure 2: Warm, saline Agulhas waters influence temperature and salinity in the Atlantic over the full depth of the water column.
Figure 3: Agulhas leakage advects warm, saline waters into the Atlantic, predominantly through Agulhas rings.
Figure 4: Palaeoceanographic time series from the Agulhas leakage corridor spanning the last 570,000 yr.


  1. 1

    Gordon, A. L., Weiss, R. F., Smethie, W. M. & Warner, M. J. Thermocline and intermediate water communication between the South Atlantic and Indian Oceans. J. Geophys. Res. 97, 7223–7240 (1992)

    ADS  Google Scholar 

  2. 2

    De Ruijter, W. P. M. et al. Indian-Atlantic inter-ocean exchange: dynamics, estimation, and impact. J. Geophys. Res. 104, 20885–20910 (1999)This work reviews the dynamics and variability of the Indian–Atlantic connection and sets the stage for further research into its wider impacts.

    ADS  Google Scholar 

  3. 3

    Lutjeharms, J. R. E. The Agulhas Current (Springer, 2006)

    Google Scholar 

  4. 4

    Donners, J. & Drijfhout, S. S. The Lagrangian view of South Atlantic interocean exchange in a global ocean model compared with inverse model results. J. Phys. Oceanogr. 34, 1019–1035 (2004)

    ADS  Google Scholar 

  5. 5

    Van Aken, H. M. et al. Observations of a young Agulhas ring, Astrid, during MARE in March 2000. Deep-Sea Res. II 50, 167–195 (2003)

    ADS  Google Scholar 

  6. 6

    Schouten, M. W., De Ruijter, W. P. M., van Leeuwen, P. J. & Lutjeharms, J. R. E. Translation, decay, and splitting of Agulhas Rings in the south-eastern Atlantic Ocean. J. Geophys. Res. 105, 21913–21925 (2000)

    ADS  Google Scholar 

  7. 7

    Boebel, O. et al. The Cape Cauldron, a regime of turbulent inter-ocean exchange. Deep-Sea Res. II 50, 57–86 (2003)This work describes the mesoscale turbulent regime in the Cape basin for the first time, where important eddy mixing and air–sea interaction transform Agulhas leakage waters into those that take part in the AMOC.

    ADS  Google Scholar 

  8. 8

    De Ruijter, W. P. M. Asymptotic analysis of the Agulhas and Brazil current systems. J. Phys. Oceanogr. 12, 361–373 (1982)

    ADS  Google Scholar 

  9. 9

    Biastoch, A., Böning, C. W., Lutjeharms, J. R. E. & Schwarzkopf, F. U. Increase in Agulhas leakage due to pole-ward shift of the Southern Hemisphere westerlies. Nature 462, 495–498 (2009)This was the first global hindcast simulation, with an eddy-resolving Agulhas nest, to show that Agulhas leakage is likely to have increased under anthropogenic forcing.

    ADS  CAS  PubMed  Google Scholar 

  10. 10

    Rouault, M., Penven, P. & Pohl, B. Warming in the Agulhas Current system since the 1980’s. Geophys. Res. Lett. 36, L12602 (2009)In this work, satellite observations and a regional model are used to show that the Agulhas system has been warming, consistent with increased Agulhas Current transport.

    ADS  Google Scholar 

  11. 11

    Berger, W. H. & Wefer, G. in The South Atlantic: Present and Past Circulation (eds Wefer, G., Berger, W. H. & Webb, D. J. ) 363–410 (Springer, 1996)

    Google Scholar 

  12. 12

    Bard, E. & Rickaby, R. E. M. Migration of the subtropical front as a modulator of glacial climate. Nature 460, 380–383 (2009)

    ADS  CAS  PubMed  Google Scholar 

  13. 13

    Weijer, W., De Ruijter, W. P. M., Sterl, A. & Drijfhout, S. S. Response of the Atlantic overturning circulation to South Atlantic sources of buoyancy. Global Planet. Change 34, 293–311 (2002)This work is the only rigorous exploration of the effect of Agulhas waters on the stability of the AMOC (in the absence of changed wind forcing).

    ADS  Google Scholar 

  14. 14

    Knorr, G. & Lohmann, G. Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature 424, 532–536 (2003)Using an ocean model, the authors of this work find that abrupt resumption of the interglacial AMOC mode is triggered by increased mass transport from the Pacific and Indian (Agulhas leakage) oceans into the South Atlantic.

    ADS  CAS  PubMed  Google Scholar 

  15. 15

    Biastoch, A., Böning, C. W. & Lutjeharms, J. R. E. Agulhas Leakage dynamics affects decadal variability in Atlantic overturning circulation. Nature 456, 489–492 (2008)

    ADS  CAS  PubMed  Google Scholar 

  16. 16

    Weijer, W., De Ruijter, W. P. M. & Dijkstra, H. A. Stability of the Atlantic overturning circulation: competition between Bering Strait freshwater flux and Agulhas heat and salt sources. J. Phys. Oceanogr. 31, 2385–2402 (2001)

    ADS  Google Scholar 

  17. 17

    Peeters, F. J. C. et al. Vigorous exchange between the Indian and Atlantic oceans at the end of the past five glacial periods. Nature 430, 661–665 (2004)This work links glacial terminations with increased Agulhas leakage using an assemblage of subtropical foraminifera to trace changes in leakage over the past 550,000 yr.

    ADS  CAS  PubMed  Google Scholar 

  18. 18

    Flores, J. A., Gersonde, R. & Sierro, F. J. Pleistocene fluctuations in the Agulhas Current Retroflection based on the calcareous plankton record. Mar. Micropaleontol. 37, 1–22 (1999)

    ADS  Google Scholar 

  19. 19

    Chiessi, C. M. et al. South Atlantic interocean exchange as the trigger for the Bølling warm event. Geology 36, 919–922 (2008)

    ADS  CAS  Google Scholar 

  20. 20

    Alory, G., Wijffels, S. & Meyers, G. Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett. 34, L02606 (2007)

    ADS  Google Scholar 

  21. 21

    Gregory, J. M. et al. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett. 32, L12703 (2005)

    ADS  Google Scholar 

  22. 22

    Stammer, D. Response of the global ocean to Greenland and Antarctic ice melting. J. Geophys. Res. 113, C06022 (2008)

    ADS  Google Scholar 

  23. 23

    Gordon, A. L. The brawniest retroflection. Nature 421, 904–905 (2003)

    ADS  CAS  PubMed  Google Scholar 

  24. 24

    Song, Q., Gordon, A. L. & Visbeck, M. Spreading of the Indonesian Throughflow in the Indian Ocean. J. Phys. Oceanogr. 34, 772–792 (2004)

    ADS  Google Scholar 

  25. 25

    Beal, L. M., Chereskin, T. K., Lenn, Y. D. & Elipot, S. The sources and mixing characteristics of the Agulhas Current. J. Phys. Oceanogr. 36, 2060–2074 (2006)

    ADS  Google Scholar 

  26. 26

    Ridderinkhof, H. et al. Seasonal and interannual variability in the Mozambique Channel from moored current observations. J. Geophys. Res. 115, C06010 (2010)

    ADS  Google Scholar 

  27. 27

    Swallow, J., Fieux, M. & Schott, F. The boundary currents east and north of Madagascar 1: geostrophic currents and transports. J. Geophys. Res. 93, 4951–4962 (1988)

    ADS  Google Scholar 

  28. 28

    Donohue, K. A. & Toole, J. M. A near-synoptic survey of the Southwest Indian Ocean. Deep-Sea Res. II 50, 1893–1931 (2003)

    ADS  Google Scholar 

  29. 29

    Nauw, J. J., van Aken, H. M., Webb, A., Lutjeharms, J. R. E. & De Ruijter, W. P. M. Observations of the southern East Madagascar Current and undercurrent and countercurrent system. J. Geophys. Res. 113, C08006 (2008)

    ADS  Google Scholar 

  30. 30

    Bryden, H. L., Beal, L. M. & Duncan, L. M. Structure and transport of the Agulhas Current and its temporal variability. J. Oceanogr. 61, 479–492 (2005)In this work, the first time series of Agulhas Current transport finds a dominant meander mode at 50–70 d.

    Google Scholar 

  31. 31

    Richardson, P. L. Agulhas Leakage into the Atlantic estimated with subsurface floats and surface drifters. Deep-Sea Res. I 54, 1361–1389 (2007)

    Google Scholar 

  32. 32

    Lutjeharms, J. R. E. Remote sensing corroboration of retroflection of the East Madagascar Current. Deep-Sea Res. I 35, 2045–2050 (1988)

    ADS  Google Scholar 

  33. 33

    Quartly, G. D. & Srokosz, M. A. SST observations of the Agulhas and East Madagascar retroflections by the TRMM microwave imager. J. Phys. Oceanogr. 32, 1585–1592 (2002)

    ADS  Google Scholar 

  34. 34

    De Ruijter, W. P. M. et al. Eddies and dipoles around South Madagascar: formation, pathways and large-scale impact. Deep-Sea Res. I 51, 383–400 (2004)This work shows that both anticyclones and cyclones are commonly shed around Madagascar and propagate into the Agulhas system.

    Google Scholar 

  35. 35

    Quartly, G. D., Buck, J. J. H., Srokosz, M. A. & Coward, A. C. Eddies around Madagascar: the retroflection reconsidered. J. Mar. Syst. 63, 115–129 (2006)

    ADS  Google Scholar 

  36. 36

    Siedler, G. et al. Modes of the southern extension of the East Madagascar Current. J. Geophys. Res. 114, C01005 (2009)

    ADS  Google Scholar 

  37. 37

    Palastanga, V., van Leeuwen, P. J., Schouten, M. W. & De Ruijter, W. P. M. Flow structure and variability in the subtropical Indian Ocean: instability of the South Indian Ocean Countercurrent. J. Geophys. Res. 112, C01001 (2007)

    ADS  Google Scholar 

  38. 38

    Ridgway, K. R. & Dunn, J. R. Observational evidence for a Southern Hemisphere oceanic supergyre. Geophys. Res. Lett. 34, L13612 (2007)This work reports observation of the Atlantic/Indo-Pacific supergyre in which a large proportion of Agulhas leakage takes part.

    ADS  Google Scholar 

  39. 39

    Palastanga, V., Dijkstra, H. A. & De Ruijter, W. P. M. Inertially induced connections between subgyres in the South Indian Ocean. J. Phys. Oceanogr. 39, 465–471 (2009)

    ADS  Google Scholar 

  40. 40

    Speich, S., Blanke, B. & Cai, W. Atlantic meridional overturning circulation and the Southern Hemisphere supergyre. Geophys. Res. Lett. 34, L23614 (2007)

    ADS  Google Scholar 

  41. 41

    Gordon, A. L. Interocean exchange of thermocline water. J. Geophys. Res. 91, 5037–5046 (1986)

    ADS  Google Scholar 

  42. 42

    Rintoul, S. R. South Atlantic interbasin exchange. J. Geophys. Res. 96, 2675–2692 (1991)

    ADS  Google Scholar 

  43. 43

    Sloyan, B. M. & Rintoul, S. R. The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr. 31, 143–173 (2001)

    ADS  Google Scholar 

  44. 44

    Van Sebille, E. & van Leeuwen, P. J. Fast northward energy transfer in the Atlantic due to Agulhas Rings. J. Phys. Oceanogr. 37, 2305–2315 (2007)

    ADS  Google Scholar 

  45. 45

    Cunningham, S. A. et al. Temporal variability of the Atlantic meridional overturning circulation at 26.5° N. Science 317, 935–938 (2007)

    ADS  CAS  PubMed  Google Scholar 

  46. 46

    Schouten, M. W., De Ruijter, W. P. M. & Van Leeuwen, P. J. Upstream control of Agulhas ring shedding. J. Geophys. Res. 107, 3109 (2002)This work is an observational study (satellite altimetry data) showing remote control of Agulhas ring formation by eddies from the Mozambique Channel and EMC, which in turn are triggered by westwards-propagating Rossby waves along 10° S and 24° S. Interannual modulations seem to be connected to the Indian Ocean Dipole.

    ADS  Google Scholar 

  47. 47

    Haarsma, R. J., Campos, E. J. D., Drijfhout, S., Hazeleger, W. & Severijns, C. Impacts of interruption of the Agulhas Leakage on the tropical Atlantic in coupled ocean-atmosphere simulations. Clim. Dyn. 36, 989–1003 (2009)

    Google Scholar 

  48. 48

    Hughes, G. O., Hogg, A., McC & Griffiths, R. W. Available potential energy and irreversible mixing in the meridional overturning circulation. J. Phys. Oceanogr. 39, 3130–3146 (2009)

    ADS  Google Scholar 

  49. 49

    Toggweiler, J. R. & Samuels, B. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. I 42, 477–500 (1995)

    Google Scholar 

  50. 50

    Sijp W. P & England, M. H. Southern hemisphere westerly wind control over the ocean’s thermohaline circulation. J. Clim. 22, 1277–1286 (2009)

    ADS  Google Scholar 

  51. 51

    Sen Gupta, A. et al. Projected changes to the Southern Hemisphere ocean and sea-ice in the IPCC AR4 climate models. J. Clim. 22, 3047–3078 (2009)

    ADS  Google Scholar 

  52. 52

    Toggweiler, J. R., Russell, J. L. & Carson, S. R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21, PA2005 (2006)

    ADS  Google Scholar 

  53. 53

    Watson, A. J. & Naviera Garabato, A. C. The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change. Tellus 58B, 73–87 (2006)

    ADS  CAS  Google Scholar 

  54. 54

    Tschumi, T., Joos, F. & Parekh, P. How important are Southern Hemisphere wind changes for low glacial carbon dioxide? A model study. Paleoceanography 23, PA4208 (2008)

    ADS  Google Scholar 

  55. 55

    Speer, K., Rintoul, S. R. & Sloyan, B. The diabatic deacon cell. J. Phys. Oceanogr. 30, 3212–3222 (2000)

    ADS  MathSciNet  Google Scholar 

  56. 56

    Naviera Garabato, A. C., Stevens, D. P., Watson, A. J. & Roether, W. Short-circuiting of the overturning circulation in the Antarctic Circumpolar Current. Nature 447, 194–197 (2007)

    ADS  Google Scholar 

  57. 57

    Farneti, R. & Delworth, T. L. The role of mesoscale eddies in the remote oceanic response to altered Southern Hemisphere winds. J. Phys. Oceanogr. 40, 2348–2354 (2010)

    ADS  Google Scholar 

  58. 58

    Jury, M. & Walker, N. Marine boundary layer modification across the edge of the Agulhas Current. J. Geophys. Res. 93, 647–654 (1988)

    ADS  Google Scholar 

  59. 59

    Rouault, M., Lee-Thorp, A. M. & Lutjeharms, J. R. E. The atmospheric boundary layer above the Agulhas Current during along-current winds. J. Phys. Oceanogr. 30, 40–50 (2000)

    ADS  Google Scholar 

  60. 60

    Liu, W. T., Xie, X. & Niiler, P. P. Ocean–atmosphere interaction over Agulhas Extension meanders. J. Clim. 20, 5784–5797 (2007)

    ADS  Google Scholar 

  61. 61

    Reason, C. J. C. Evidence for the influence of the Agulhas Current on REGIONAL atmospheric circulation patterns. J. Clim. 14, 2769–2778 (2001)

    ADS  Google Scholar 

  62. 62

    Nakamura, H. & Shimpo, A. Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in reanalysis datasets. J. Clim. 17, 1828–1844 (2004)

    ADS  Google Scholar 

  63. 63

    Rouault, M., White, S. A., Reason, C. J. C., Lutjeharms, J. R. E. & Jobard, I. Ocean-atmosphere interaction in the Agulhas Current region and a South African extreme weather event. Weather Forecast. 17, 655–669 (2002)

    ADS  Google Scholar 

  64. 64

    Behera, S. K. & Yamagata, T. Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett. 28, 327–330 (2001)

    ADS  Google Scholar 

  65. 65

    Hermes, J. C. & Reason, C. J. C. Ocean model diagnosis of interannual coevolving SST variability in the South Indian and South Atlantic oceans. J. Clim. 18, 2864–2882 (2005)

    ADS  Google Scholar 

  66. 66

    Zinke, J., Dullo, W.-C., Heiss, G. A. & Eisenhauer, A. ENSO and Indian Ocean subtropical dipole variability is recorded in a coral record off southwest Madagascar for the period 1659 to 1995. Earth Planet. Sci. Lett. 228, 177–194 (2004)

    ADS  CAS  Google Scholar 

  67. 67

    Palastanga, V., van Leeuwen, P. J. & De Ruijter, W. P. M. A link between low-frequency mesoscale eddy variability around Madagascar and the large-scale Indian Ocean variability. J. Geophys. Res. 111, C09029 (2006)

    ADS  Google Scholar 

  68. 68

    Beal, L. M. A time series of Agulhas Undercurrent transport. J. Phys. Oceanogr. 39, 2436–2450 (2009)

    ADS  Google Scholar 

  69. 69

    Biastoch, A., Beal, L. M., Casal, T. G. D. & Lutjeharms, J. R. E. Variability and coherence of the Agulhas Undercurrent in a high-resolution ocean general circulation model. J. Phys. Oceanogr. 39, 2417–2435 (2009)

    ADS  Google Scholar 

  70. 70

    Tsugawa, M. & Hasumi, H. Generation and growth mechanism of a Natal Pulse. J. Phys. Oceanogr. 40, 1597–1612 (2010)

    ADS  Google Scholar 

  71. 71

    Rau, A. J., Rogers, J. & Chen, M.-T. Late Quaternary palaeoceanographic record in giant piston cores off South Africa, possibly including evidence of neotectonism. Quaternary Int. 148, 65–77 (2006)

    ADS  Google Scholar 

  72. 72

    Lisiecki, L. E., Raymo, M. E. & Curry, W. B. Atlantic overturning responses to Late Pleistocene climate forcings. Nature 456, 85–88 (2008)

    ADS  CAS  PubMed  Google Scholar 

  73. 73

    Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2 . Science 323, 1443–1448 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Thornalley, D. J. R., Elderfield, H. & McCave, N. Reconstructing North Atlantic deglacial surface hydrography and its link to the Atlantic overturning circulation. Global Planet. Change (in the press)

  75. 75

    Zahn, R. Beyond the CO2 connection. Nature 460, 335–336 (2009)

    ADS  CAS  PubMed  Google Scholar 

  76. 76

    Cai, W. Antarctic ozone depletion causes an intensification of the Southern Ocean super-gyre circulation. Geophys. Res. Lett. 33, L03712 (2006)

    ADS  Google Scholar 

  77. 77

    Vellinga, M. & Wood, R. A. Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim. Change 54, 251–267 (2005)

    Google Scholar 

  78. 78

    Stephens, B. B. & Keeling, R. F. The influence of Antarctic sea ice on glacial-interglacial CO2 variations. Nature 404, 171–174 (2000)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Wunsch, C. & Ferrari, R. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281–314 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  80. 80

    Kuhlbrodt, T. et al. On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys. 45, RG2001 (2007)

    ADS  Google Scholar 

  81. 81

    Weijer, W., De Ruijter, W. P. M., Dijkstra, H. A. & van Leeuwen, P. J. Impact of interbasin exchange on the Atlantic overturning circulation. J. Phys. Oceanogr. 29, 2266–2284 (1999)

    ADS  Google Scholar 

  82. 82

    McDonagh, E. L. & King, B. A. Oceanic fluxes in the South Atlantic. J. Phys. Oceanogr. 35, 109–122 (2005)

    ADS  Google Scholar 

  83. 83

    Rahmstorf, S. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim. Dyn. 12, 799–811 (1996)

    Google Scholar 

  84. 84

    DeVries, P. & Weber, S. L. The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation. Geophys. Res. Lett. 32, L09606 (2005)

    ADS  Google Scholar 

  85. 85

    Dijkstra, H. A. Characterization of the multiple equilibria regime in a global ocean model. Tellus 59A, 695–705 (2007)

    ADS  Google Scholar 

  86. 86

    Romanova, V., Kohl, A., Stammer, D., Klepp, C. & Andersson, A. Sea surface freshwater flux estimates from GECCO, HOAPS and NCEP. Tellus 62, 435–452 (2010)

    Google Scholar 

  87. 87

    Huisman, S. E., den Toom, M., Dijkstra, H. A. & Drijfhout, S. An indicator of the multiple equilibria regime of the Atlantic meridional overturning circulation. J. Phys. Oceanogr. 40, 551–567 (2010)

    ADS  Google Scholar 

  88. 88

    Marsh, R., Hazeleger, W., Yool, A. & Rohling, E. J. Stability of the thermohaline circulation under millennial CO2 forcing and two alternative controls on Atlantic salinity. Geophys. Res. Lett. 34, L03605 (2007)

    ADS  Google Scholar 

  89. 89

    Cortese, G. & Abelmann, A. Radiolarian-based paleotemperatures during the last 160 kyr at ODP Site 1089 (Southern Ocean, Atlantic Sector). Palaeogeogr. Palaeoclimatol. Palaeoecol. 182, 259–286 (2002)

    Google Scholar 

  90. 90

    Martinez-Mendez, G. et al. Contrasting multi-proxy reconstructions of surface ocean hydrography in the Agulhas Corridor and implications for the Agulhas Leakage during the last 345,000 years. Paleoceanography 25, PA4227 (2010)

    ADS  Google Scholar 

  91. 91

    Franzese, A. M., Hemming, S. R. & Goldstein, S. L. Use of strontium isotopes in detrital sediments to constrain the glacial position of the Agulhas Retroflection. Paleoceanography 24, PA2217 (2009)

    ADS  Google Scholar 

  92. 92

    Large, W. G. & Yeager, S. G. Diurnal to Decadal Global Forcing for Ocean and Sea-Ice Models: The Data Sets and Flux Climatologies. NCAR Tech. Note NCAR/TN-460+STR (NCAR, 2004)

    Google Scholar 

  93. 93

    Donlon, C. et al. The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull. Am Meteorol. Soc. 88, 1197–1213 (2007)

    ADS  Google Scholar 

  94. 94

    Mix, A. C., Le, J. & Shackleton, N. J. Benthic foraminiferal stable isotope stratigraphy of Site 846: 0–1.8 Ma. Proc. ODP Sci. Results 138, 839–854 (1995)

    Google Scholar 

  95. 95

    Speich, S., Lutjeharms, J. R. E., Penven, P. & Blanke, B. Role of bathymetry in Agulhas Current configuration and behaviour. Geophys. Res. Lett. 33, L23611 (2006)

    ADS  Google Scholar 

  96. 96

    Zharkov, V. & Nof, D. Retroflection from slanted coastlines – circumventing the “vorticity paradox”. Ocean Sci. Discuss. 4, 293–306 (2008)

    ADS  Google Scholar 

  97. 97

    Dijkstra, H. A. & de Ruijter, W. P. M. On the physics of the Agulhas Current: steady retroflection regimes. J. Phys. Oceanogr. 31, 2971–2985 (2001)

    ADS  Google Scholar 

  98. 98

    Van Sebille, E., Biastoch, A., van Leeuwen, P. J. & De Ruijter, W. P. M. A weaker Agulhas Current leads to more Agulhas Leakage. Geophys. Res. Lett. 36, L03601 (2009)

    ADS  Google Scholar 

  99. 99

    Rojas, M. et al. The Southern Westerlies during the last glacial maximum in PMIP2 simulations. Clim. Dyn. 32, 525–548 (2009)

    Google Scholar 

  100. 100

    Banks, H. T., Stark, S. & Keen, A. B. The adjustment of the coupled climate model HadGEM1 toward equilibrium and the impact on global climate. J. Clim. 20, 5815–5826 (2007)

    ADS  Google Scholar 

Download references


Fig. 1 was produced by E. Van Sebille and Fig. 2 was produced by H. Van Aken. We thank D. leBars for discussions. L.M.B. is funded by the US National Science Foundation through the ACT project, award no. OCE-0850891. W.P.M.D.R. is funded by the Netherlands Organization for Scientific Research through the INATEX program, ZKO no. 839.08.430. R.Z. receives funding from the Ministerio de Ciencia e Innovación, Spain, through grant CGL2007-61579/CLI. A.B. and R.Z. acknowledge funding by the EC FP7 Marie Curie ITN GATEWAYS. This document is based on work partially supported by the US National Science Foundation under Grant OCE-0938349 to the Scientific Committee on Oceanic Research.

Author information





The ideas presented here were developed jointly by L.M.B., W.P.M.D.R., A.B., R.Z. and the SCOR/WCRP/IAPSO Working Group 136 on the Climatic Importance of the Greater Agulhas System. Working Group 136 is sponsored by the Scientific Committee for Oceanic Research (SCOR), the World Climate Research Program (WCRP) and the International Association for the Physical Sciences of the Ocean (IAPSO).

Corresponding author

Correspondence to Lisa M. Beal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beal, L., De Ruijter, W., Biastoch, A. et al. On the role of the Agulhas system in ocean circulation and climate. Nature 472, 429–436 (2011). https://doi.org/10.1038/nature09983

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.