Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An open-system quantum simulator with trapped ions

Abstract

The control of quantum systems is of fundamental scientific interest and promises powerful applications and technologies. Impressive progress has been achieved in isolating quantum systems from the environment and coherently controlling their dynamics, as demonstrated by the creation and manipulation of entanglement in various physical systems. However, for open quantum systems, engineering the dynamics of many particles by a controlled coupling to an environment remains largely unexplored. Here we realize an experimental toolbox for simulating an open quantum system with up to five quantum bits (qubits). Using a quantum computing architecture with trapped ions, we combine multi-qubit gates with optical pumping to implement coherent operations and dissipative processes. We illustrate our ability to engineer the open-system dynamics through the dissipative preparation of entangled states, the simulation of coherent many-body spin interactions, and the quantum non-demolition measurement of multi-qubit observables. By adding controlled dissipation to coherent operations, this work offers novel prospects for open-system quantum simulation and computation.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental tools for the simulation of open quantum systems with ions.
Figure 2: Experimental signatures of Bell-state pumping.
Figure 3: Experimental signatures of four-qubit stabilizer pumping.
Figure 4: Coherent simulation of four-body spin interactions.

References

  1. 1

    Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010)

    CAS  Article  ADS  Google Scholar 

  2. 2

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008)

    CAS  Article  ADS  Google Scholar 

  3. 3

    Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664–669 (2008)

    CAS  Article  ADS  Google Scholar 

  4. 4

    Neeley, M. et al. Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570–573 (2010)

    CAS  Article  ADS  Google Scholar 

  5. 5

    Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010)

    CAS  Article  ADS  Google Scholar 

  6. 6

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)

    CAS  Article  ADS  Google Scholar 

  7. 7

    O'Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007)

    CAS  Article  ADS  Google Scholar 

  8. 8

    Jones, J. A. Quantum computing with NMR. Preprint at 〈http://arXiv.org/abs/1011.1382〉 (2010)

  9. 9

    Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008)

    CAS  Article  ADS  Google Scholar 

  10. 10

    Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007)

    CAS  Article  ADS  Google Scholar 

  11. 11

    Wrachtrup, J. & Jelezko, F. Processing quantum information in diamond. J. Phys. Condens. Matter 18, S807–S824 (2006)

    CAS  Article  ADS  Google Scholar 

  12. 12

    Feynman, R. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    MathSciNet  Article  Google Scholar 

  13. 13

    Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996)

    MathSciNet  CAS  Article  ADS  Google Scholar 

  14. 14

    Buluta, I. & Nori, F. Quantum simulators. Science 326, 108–111 (2009)

    CAS  Article  ADS  Google Scholar 

  15. 15

    Myatt, C. J. et al. Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403, 269–273 (2000)

    CAS  Article  ADS  Google Scholar 

  16. 16

    Viola, L. et al. Experimental realization of noiseless subsystems for quantum information processing. Science 293, 2059–2063 (2001)

    CAS  Article  ADS  Google Scholar 

  17. 17

    Deléglise, S. et al. Reconstruction of nonclassical cavity field states with snapshots of their decoherence. Nature 455, 510–514 (2008)

    Article  ADS  Google Scholar 

  18. 18

    Barreiro, J. T. et al. Experimental multiparticle entanglement dynamics induced by decoherence. Nature Phys. 6, 943–946 (2010); published online 26 September 2010.

    CAS  Article  ADS  Google Scholar 

  19. 19

    Krauter, H. et al. Entanglement generated by dissipation. Preprint at 〈http://arXiv.org/abs/1006.4344〉 (2010)

  20. 20

    Diehl, S. et al. Quantum states and phases in driven open quantum systems with cold atoms. Nature Phys. 4, 878–883 (2008)

    CAS  Article  ADS  Google Scholar 

  21. 21

    Cho, J., Bose, S. & Kim, M. S. Optical pumping into many-body entanglement. Phys. Rev. Lett. 106, 020504 (2011)

    Article  ADS  Google Scholar 

  22. 22

    Verstraete, F., Wolf, M. M. & Cirac, J. I. Quantum computation and quantum-state engineering driven by dissipation. Nature Phys. 5, 633–636 (2009)

    CAS  Article  ADS  Google Scholar 

  23. 23

    Pastawski, F., Clemente, L. & Cirac, J. I. Quantum memories based on engineered dissipation. Preprint at 〈http://arXiv.org/abs/1010.2901〉 (2010)

  24. 24

    Goldstein, G. et al. Environment-assisted precision measurement. Preprint at 〈http://arXiv.org/abs/1001.0089〉 (2010)

  25. 25

    Lloyd, S. & Viola, L. Engineering quantum dynamics. Phys. Rev. A 65, 010101 (2001)

    MathSciNet  Article  Google Scholar 

  26. 26

    Häffner, H., Roos, C. F. & Blatt, R. Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008)

    MathSciNet  Article  ADS  Google Scholar 

  27. 27

    Home, J. P. et al. Complete methods set for scalable ion trap quantum information processing. Science 325, 1227–1230 (2009)

    MathSciNet  CAS  Article  ADS  Google Scholar 

  28. 28

    Weimer, H., Müller, M., Lesanovsky, I., Zoller, P. & Büchler, H. P. A Rydberg quantum simulator. Nature Phys. 6, 382–388 (2010)

    CAS  Article  ADS  Google Scholar 

  29. 29

    Bacon, D. et al. Universal simulation of Markovian quantum dynamics. Phys. Rev. A 64, 062302 (2001)

    Article  ADS  Google Scholar 

  30. 30

    Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003)

    MathSciNet  CAS  Article  ADS  Google Scholar 

  31. 31

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000)

    MATH  Google Scholar 

  32. 32

    Steane, A. M. Efficient fault-tolerant quantum computing. Nature 399, 124–126 (1999)

    CAS  Article  ADS  Google Scholar 

  33. 33

    Dür, W., Bremner, M. J. & Briegel, H. J. Quantum simulation of interacting high-dimensional systems: the influence of noise. Phys. Rev. A 78, 052325 (2008)

    Article  ADS  Google Scholar 

  34. 34

    Wiseman, H. M. & Milburn, G. J. Quantum Measurement and Control (Cambridge Univ. Press, 2009)

    Book  Google Scholar 

  35. 35

    Schmidt-Kaler, F. et al. How to realize a universal quantum gate with trapped ions. Appl. Phys. B 77, 789–796 (2003)

    CAS  Article  ADS  Google Scholar 

  36. 36

    Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999)

    Article  ADS  Google Scholar 

  37. 37

    Monz, T. et al. Coherence of large-scale entanglement. Preprint at 〈http://arXiv.org/abs/1009.6126〉 (2010)

  38. 38

    Roos, C. F. et al. Control and measurement of three-qubit entangled states. Science 304, 1478–1480 (2004)

    CAS  Article  ADS  Google Scholar 

  39. 39

    Gilchrist, A., Langford, N. K. & Nielsen, M. A. Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71, 062310 (2005)

    Article  ADS  Google Scholar 

  40. 40

    Jozsa, R. Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315–2323 (1994)

    MathSciNet  Article  ADS  Google Scholar 

  41. 41

    Gühne, O. & Seevinck, M. Separability criteria for genuine multiparticle entanglement. N. J. Phys. 12, 053002 (2010)

    Article  Google Scholar 

  42. 42

    Friedenauer, A., Schmitz, H., Glueckert, J., Porras, D. & Schaetz, T. Simulating a quantum magnet with trapped ions. Nature Phys. 4, 757–761 (2008)

    CAS  Article  ADS  Google Scholar 

  43. 43

    Kim, K. et al. Quantum simulation of frustrated Ising spins with trapped ions. Nature 465, 590–593 (2010)

    CAS  Article  ADS  Google Scholar 

  44. 44

    Porras, D. & Cirac, J. I. Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004)

    CAS  Article  ADS  Google Scholar 

  45. 45

    Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)

    MathSciNet  CAS  Article  ADS  Google Scholar 

  46. 46

    Ralph, T. C., Bartlett, S. D., O'Brien, J. L., Pryde, G. J. & Wiseman, H. M. Quantum nondemolition measurements for quantum information. Phys. Rev. A 73, 012113 (2006)

    Article  ADS  Google Scholar 

  47. 47

    Riebe, M. et al. Deterministic entanglement swapping with an ion-trap quantum computer. Nature Phys. 4, 839–842 (2008)

    CAS  Article  ADS  Google Scholar 

  48. 48

    Fleming, G. R., Huelga, S. & Plenio, M. (eds). New J. Phys. 12 (Focus on quantum effects and noise in biomolecules), (2010)

Download references

Acknowledgements

We thank K. Hammerer, I. Chuang, and O. Gühne for discussions and T. Northup for critically reading the manuscript. We acknowledge support by the Austrian Science Fund (FOQUS), the European Commission (AQUTE), the Institut für Quanteninformation GmbH, and a Marie Curie International Incoming Fellowship within the 7th European Community Framework Programme.

Author information

Affiliations

Authors

Contributions

M.M. and J.T.B. developed the research, based on theoretical ideas proposed originally by P.Z.; J.T.B., P.S. and D.N. performed the experiments; J.T.B., P.S. and T.M. analysed the data; P.S., J.T.B., D.N., T.M., M.C., M.H. and R.B. contributed to the experimental set-up; M.M., J.T.B. and P.Z. wrote the manuscript, with revisions provided by C.F.R.; all authors contributed to the discussion of the results and manuscript.

Corresponding authors

Correspondence to Peter Zoller or Rainer Blatt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text and Data, Supplementary Figures 1-11 with legends, Supplementary Tables 1-4 and additional references. (PDF 1862 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barreiro, J., Müller, M., Schindler, P. et al. An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011). https://doi.org/10.1038/nature09801

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing