Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic variegation of clonal architecture and propagating cells in leukaemia

Abstract

Little is known of the genetic architecture of cancer at the subclonal and single-cell level or in the cells responsible for cancer clone maintenance and propagation. Here we have examined this issue in childhood acute lymphoblastic leukaemia in which the ETV6–RUNX1 gene fusion is an early or initiating genetic lesion followed by a modest number of recurrent or ‘driver’ copy number alterations. By multiplexing fluorescence in situ hybridization probes for these mutations, up to eight genetic abnormalities can be detected in single cells, a genetic signature of subclones identified and a composite picture of subclonal architecture and putative ancestral trees assembled. Subclones in acute lymphoblastic leukaemia have variegated genetics and complex, nonlinear or branching evolutionary histories. Copy number alterations are independently and reiteratively acquired in subclones of individual patients, and in no preferential order. Clonal architecture is dynamic and is subject to change in the lead-up to a diagnosis and in relapse. Leukaemia propagating cells, assayed by serial transplantation in NOD/SCID IL2Rγnull mice, are also genetically variegated, mirroring subclonal patterns, and vary in competitive regenerative capacity in vivo. These data have implications for cancer genomics and for the targeted therapy of cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of subclonal architecture in ALL.
Figure 2: Changes in clonal architecture in ALL.
Figure 3: Genetics of cells propagating NOD/SCID IL2Rγ null mice.
Figure 4: Shift in clonal architecture of ALL after in vivo NOD/SCID IL2Rγ null transplantation.

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

SNP array data have been deposited in the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under accession code GSE24412.

References

  1. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007)

    Article  ADS  CAS  Google Scholar 

  2. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010)

    Article  ADS  CAS  Google Scholar 

  3. Fox, E. J., Salk, J. J. & Loeb, L. A. Cancer genome sequencing—an interim analysis. Cancer Res. 69, 4948–4950 (2009)

    Article  CAS  Google Scholar 

  4. Marusyk, A. & Polyak, K. Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1805, 105–117 (2010)

    CAS  PubMed  Google Scholar 

  5. Dick, J. E. Stem cell concepts renew cancer research. Blood 112, 4793–4807 (2008)

    Article  CAS  Google Scholar 

  6. Klein, C. A. et al. Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360, 683–689 (2002)

    Article  CAS  Google Scholar 

  7. Greaves, M. F. & Wiemels, J. Origins of chromosome translocations in childhood leukaemia. Nature Rev. Cancer 3, 639–649 (2003)

    Article  CAS  Google Scholar 

  8. Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Bateman, C. M. et al. Acquisition of genome-wide copy number alterations in monozygotic twins with acute lymphoblastic leukemia. Blood 115, 3553–3558 (2010)

    Article  CAS  Google Scholar 

  10. Loncarevic, I. F. et al. Trisomy 21 is a recurrent secondary aberration in childhood acute lymphoblastic leukemia with TEL/AML1 fusion. Genes Chromosom. Cancer 24, 272–277 (1999)

    Article  CAS  Google Scholar 

  11. Kitagawa, Y. et al. Prevalent involvement of illegitimate V(D)J recombination in chromosome 9p21 deletions in lymphoid leukemia. J. Biol. Chem. 277, 46289–46297 (2002)

    Article  CAS  Google Scholar 

  12. Mullighan, C. G. et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110–114 (2008)

    Article  ADS  CAS  Google Scholar 

  13. Feldhahn, N. et al. Activation-induced cytidine deaminase acts as a mutator in BCR-ABL1-transformed acute lymphoblastic leukemia cells. J. Exp. Med. 204, 1157–1166 (2007)

    Article  CAS  Google Scholar 

  14. van Dongen, J. J. M., Szczepanski, T. & Adriaansen, H. J. in Leukemia (eds Henderson, E. S., Lister, T. A. & Greaves, M. F.) 85–129 (Saunders, 2002)

    Google Scholar 

  15. le Viseur, C. et al. In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell 14, 47–58 (2008)

    Article  CAS  Google Scholar 

  16. Castor, A. et al. Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nature Med. 11, 630–637 (2005)

    Article  CAS  Google Scholar 

  17. Hong, D. et al. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 319, 336–339 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Breatnach, F., Chessells, J. M. & Greaves, M. F. The aplastic presentation of childhood leukaemia: a feature of common-ALL. Br. J. Haematol. 49, 387–393 (1981)

    Article  CAS  Google Scholar 

  19. Horsley, S. W. et al. Genetic lesions in a preleukemic aplasia phase in a child with acute lymphoblastic leukemia. Genes Chromosom. Cancer 47, 333–340 (2008)

    Article  CAS  Google Scholar 

  20. Zuna, J. et al. TEL deletion analysis supports a novel view of relapse in childhood acute lymphoblastic leukemia. Clin. Cancer Res. 10, 5355–5360 (2004)

    Article  CAS  Google Scholar 

  21. Mullighan, C. G. et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322, 1377–1380 (2008)

    Article  ADS  CAS  Google Scholar 

  22. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976)

    Article  ADS  CAS  Google Scholar 

  23. Gatenby, R. A. & Vincent, T. L. An evolutionary model of carcinogenesis. Cancer Res. 63, 6212–6220 (2003)

    CAS  PubMed  Google Scholar 

  24. Merlo, L. M. F., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nature Rev. Cancer 6, 924–935 (2006)

    Article  CAS  Google Scholar 

  25. Teixeira, M. R. et al. Karyotypic comparisons of multiple tumorous and macroscopically normal surrounding tissue samples from patients with breast cancer. Cancer Res. 56, 855–859 (1996)

    CAS  PubMed  Google Scholar 

  26. Takahashi, T. et al. Clonal and chronological genetic analysis of multifocal cancers of the bladder and upper urinary tract. Cancer Res. 58, 5835–5841 (1998)

    CAS  PubMed  Google Scholar 

  27. Cottu, P. H. et al. Intratumoral heterogeneity of HER2/neu expression and its consequences for the management of advanced breast cancer. Ann. Oncol. 19, 596–597 (2008)

    Google Scholar 

  28. Park, S. Y. et al. Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J. Clin. Invest. 120, 636–644 (2010)

    Article  CAS  Google Scholar 

  29. Clark, J. et al. Complex patterns of ETS gene alteration arise during cancer development in the human prostate. Oncogene 27, 1993–2003 (2008)

    Article  CAS  Google Scholar 

  30. Shipitsin, M. et al. Molecular definition of breast tumor heterogeneity. Cancer Cell 11, 259–273 (2007)

    Article  CAS  Google Scholar 

  31. Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nature Genet. 38, 468–473 (2006)

    Article  CAS  Google Scholar 

  32. Aubele, M. et al. Intratumoral heterogeneity in breast carcinoma revealed by laser-microdissection and comparative genomic hybridization. Cancer Genet. Cytogenet. 110, 94–102 (1999)

    Article  CAS  Google Scholar 

  33. Boland, C. R. et al. Microallelotyping defines the sequence and tempo of allelic losses at tumour suppressor gene loci during colorectal cancer progression. Nature Med. 1, 902–909 (1995)

    Article  CAS  Google Scholar 

  34. Geyer, F. C. et al. Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. J. Pathol. 220, 562–573 (2010)

    Article  CAS  Google Scholar 

  35. Navin, N. et al. Inferring tumor progression from genomic heterogeneity. Genome Res. 20, 68–80 (2010)

    Article  CAS  Google Scholar 

  36. Stoecklein, N. H. et al. Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell 13, 441–453 (2008)

    Article  CAS  Google Scholar 

  37. Attard, G. et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res. 69, 2912–2918 (2009)

    Article  CAS  Google Scholar 

  38. Klein, C. A. & Stoecklein, N. H. Lessons from an aggressive cancer: evolutionary dynamics in esophageal carcinoma. Cancer Res. 69, 5285–5288 (2009)

    Article  CAS  Google Scholar 

  39. Kuukasjärvi, T. et al. Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res. 57, 1597–1604 (1997)

    PubMed  Google Scholar 

  40. Tsao, J.-L. et al. Colorectal adenoma and cancer divergence. Evidence of multilineage progression. Am. J. Pathol. 154, 1815–1824 (1999)

    Article  CAS  Google Scholar 

  41. Campbell, P. J. et al. Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc. Natl Acad. Sci. USA 105, 13081–13086 (2008)

    Article  ADS  CAS  Google Scholar 

  42. Barrett, P. H., et al., eds. Charles Darwin’s Notebooks, 1836–1844 (Cambridge Univ. Press, 1987)

    Google Scholar 

  43. Adams, J. M. & Strasser, A. Is tumor growth sustained by rare cancer stem cells or dominant clones? Cancer Res. 68, 4018–4021 (2008)

    Article  CAS  Google Scholar 

  44. Visvader, J. E. & Lindeman, G. J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Rev. Cancer 8, 755–768 (2008)

    Article  CAS  Google Scholar 

  45. Rosen, J. M. & Jordan, C. T. The increasing complexity of the cancer stem cell paradigm. Science 324, 1670–1673 (2009)

    Article  ADS  CAS  Google Scholar 

  46. Greaves, M. Cancer stem cells: back to Darwin? Semin. Cancer Biol. 20, 65–70 (2010)

    Article  Google Scholar 

  47. Maenhaut, C., Dumont, J. E., Roger, P. P. & van Staveren, W. C. G. Cancer stem cells: a reality, a myth, a fuzzy concept or a misnomer? An analysis. Carcinogenesis 31, 149–158 (2010)

    Article  CAS  Google Scholar 

  48. Shackleton, M., Quintana, E., Fearon, E. R. & Morrison, S. J. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138, 822–829 (2009)

    Article  CAS  Google Scholar 

  49. Polyak, K. Breast cancer: origins and evolution. J. Clin. Invest. 117, 3155–3163 (2007)

    Article  CAS  Google Scholar 

  50. Liu, W. et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nature Med. 15, 559–565 (2009)

    Article  CAS  Google Scholar 

  51. Nannya, Y. et al. A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res. 65, 6071–6079 (2005)

    Article  CAS  Google Scholar 

  52. Kearney, L. & Colman, S. in Methods in Molecular Biology. Leukemia. Methods and Protocols Vol. 538 (ed. So, C. W. E.) 57–70 (Humana Press, 2009)

    Google Scholar 

  53. Maecker, H. T. & Trotter, J. Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69, 1037–1042 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by specialist programme grants from The Kay Kendall Leukaemia Fund (M.G.) and Leukaemia & Lymphoma Research (M.G., T.E.) and a Deutsche Forschungsgemeinschaft fellowship LU 1474/1-1 (to C.L.). T.E. and C.L. acknowledge support from the Oxford BRC.

Author information

Authors and Affiliations

Authors

Contributions

K.A. carried out the FISH analyses. C.L. and Y.G. conducted the in vivo experiments. C.M.B. analysed the SNP array and FISH analysis of the patient with aplasia and ALL. S.M.C. and I.T. performed cell immunostaining and sorting. F.W.v.D. provided SNP array data. H.K., A.V.M. and J.S. provided patient data and samples. T.E. advised on design and interpretation of in vivo experiments. L.K. supervised the FISH studies. L.K. and M.G. designed the overall study. M.G. wrote the paper with critical input from T.E., L.K. and other authors.

Corresponding author

Correspondence to Mel Greaves.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-10 with legends and Supplementary Tables 1-4. (PDF 4219 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, K., Lutz, C., van Delft, F. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469, 356–361 (2011). https://doi.org/10.1038/nature09650

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09650

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer