Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The redox state of arc mantle using Zn/Fe systematics



Many arc lavas are more oxidized than mid-ocean-ridge basalts and subduction introduces oxidized components into the mantle1,2,3,4. As a consequence, the sub-arc mantle wedge is widely believed to be oxidized3,5. The Fe oxidation state of sub-arc mantle is, however, difficult to determine directly, and debate persists as to whether this oxidation is intrinsic to the mantle source6,7. Here we show that Zn/FeT (where FeT = Fe2+ + Fe3+) is redox-sensitive and retains a memory of the valence state of Fe in primary arc basalts and their mantle sources. During melting of mantle peridotite, Fe2+ and Zn behave similarly, but because Fe3+ is more incompatible than Fe2+, melts generated in oxidized environments have low Zn/FeT. Primitive arc magmas have identical Zn/FeT to mid-ocean-ridge basalts, suggesting that primary mantle melts in arcs and ridges have similar Fe oxidation states. The constancy of Zn/FeT during early differentiation involving olivine requires that Fe3+/FeT remains low in the magma. Only after progressive fractionation does Fe3+/FeT increase and stabilize magnetite as a fractionating phase. These results suggest that subduction of oxidized crustal material may not significantly alter the redox state of the mantle wedge. Thus, the higher oxidation states of arc lavas must be in part a consequence of shallow-level differentiation processes, though such processes remain poorly understood.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Literature-compiled MORBs for different ridge systems.
Figure 2: Calculated Fe 3+ /Fe T versus Zn/Fe T in primary basalts.
Figure 3: Internally consistent data for a subset of primitive basalts from the Cascades arc and plutonic rocks from the Cretaceous Peninsular Ranges Batholith.
Figure 4: Literature-compiled Zn/Fe T , FeO T and wet chemistry whole-rock Fe 3+ /Fe T versus MgO in arc lavas from the Marianas, Cascades and Aleutians.


  1. Carmichael, I. S. E. The redox states of basic and silicic magmas: a reflection of their source regions? Contrib. Mineral. Petrol. 106, 129–141 (1991)

    ADS  CAS  Article  Google Scholar 

  2. Bezos, A. & Humler, E. The Fe3+/Fe ratios of MORB glasses and their implications for mantle melting. Geochim. Cosmochim. Acta 69, 711–725 (2005)

    ADS  CAS  Article  Google Scholar 

  3. Kelley, K. A. & Cottrell, E. Water and the oxidation state of subduction zone magmas. Science 325, 605–607 (2009)

    ADS  CAS  Article  Google Scholar 

  4. Christie, D. M., Carmichael, I. S. E. & Langmuir, C. H. Oxidation states of mid-ocean ridge basalt glasses. Earth Planet. Sci. Lett. 79, 397–411 (1986)

    ADS  CAS  Article  Google Scholar 

  5. Gill, J. B. Orogenic Andesites and Plate Tectonics (Springer, 1981)

    Book  Google Scholar 

  6. Mallmann, G. & O’Neill, H. S. C. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J. Petrol. 50, 1765–1794 (2009)

    ADS  CAS  Article  Google Scholar 

  7. Lee, C.-T. A., Leeman, W. P., Canil, D. & Li, Z.-X. A. Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J. Petrol. 46, 2313–2336 (2005)

    ADS  CAS  Article  Google Scholar 

  8. Frost, B. R. in Oxide Minerals: Petrologic and Magnetic Significance (ed. Lindsley, D. H.) Vol. 25, 1–9 (Mineral. Soc. Am. Rev. Min., 1991)

    Book  Google Scholar 

  9. Wood, B. J., Bryndzia, L. T. & Johnson, K. E. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248, 337–345 (1990)

    ADS  CAS  Article  Google Scholar 

  10. Osborn, E. F. Role of oxygen partial pressure in the crystallization and differentiation of basaltic magma. Am. J. Sci. 257, 609–647 (1959)

    ADS  CAS  Article  Google Scholar 

  11. Arculus, R. J. Use and abuse of the terms calcalkaline and calcalkalic. J. Petrol. 44, 929–935 (2003)

    ADS  CAS  Article  Google Scholar 

  12. Alt, J. C., Honnorez, J., Laverne, C. & Emmermann, R. Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: mineralogy, chemistry, and evolution of seawater-basalt interactions. J. Geophys. Res. 91, 10309–10335 (1986)

    ADS  CAS  Article  Google Scholar 

  13. Mungall, J. E. Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30, 915–918 (2002)

    ADS  CAS  Article  Google Scholar 

  14. Sisson, T. W. & Grove, T. L. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib. Mineral. Petrol. 113, 143–166 (1993)

    ADS  CAS  Article  Google Scholar 

  15. Patino, L. C., Carr, M. J. & Feigenson, M. D. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contrib. Mineral. Petrol. 138, 265–283 (2000)

    ADS  CAS  Article  Google Scholar 

  16. McInnes, B. I. A., Gregoire, M., Binns, R. A., Herzig, P. M. & Hannington, M. D. Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: petrology and geochemistry of fluid-metasomatised mantle wedge xenoliths. Earth Planet. Sci. Lett. 188, 169–183 (2001)

    ADS  CAS  Article  Google Scholar 

  17. Parkinson, I. J. & Arculus, R. J. The redox state of subduction zones: insights from arc-peridotites. Chem. Geol. 160, 409–423 (1999)

    ADS  CAS  Article  Google Scholar 

  18. Ishimaru, S., Arai, S. & Shukuno, H. Metal-saturated peridotite in the mantle wedge inferred from metal-bearing peridotite xenoliths from Avacha volcano, Kamchatka. Earth Planet. Sci. Lett. 284, 352–360 (2009)

    ADS  CAS  Article  Google Scholar 

  19. Malaspina, N., Poli, S. & Fumagalli, P. The oxidation state of metasomatized mantle wedge: insights from C-O-H-bearing garnet peridotite. J. Petrol. 50, 1533–1552 (2009)

    ADS  CAS  Article  Google Scholar 

  20. Wang, J., Hattori, K. H., Kilian, R. & Stern, C. R. Metasomatism of sub-arc mantle peridotites below southernmost South America: reduction of fO2 by slab-melt. Contrib. Mineral. Petrol. 153, 607–624 (2007)

    ADS  CAS  Article  Google Scholar 

  21. Frost, D. J. & McCammon, C. A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008)

    ADS  CAS  Article  Google Scholar 

  22. Canil, D. et al. Ferric iron in peridotites and mantle oxidation states. Earth Planet. Sci. Lett. 123, 205–220 (1994)

    ADS  CAS  Article  Google Scholar 

  23. Canil, D. Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature 389, 842–845 (1997)

    ADS  CAS  Article  Google Scholar 

  24. Dauphas, N. et al. Iron isotopes may reveal the redox conditions of mantle melting from Archean to present. Earth Planet. Sci. Lett. 288, 255–267 (2009)

    ADS  CAS  Article  Google Scholar 

  25. Teng, F.-Z., Dauphas, N. & Helz, R. T. Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake. Science 320, 1620–1622 (2008)

    ADS  CAS  Article  Google Scholar 

  26. Roeder, P. L. & Emslie, R. F. Olivine-liquid equilibrium. Contrib. Mineral. Petrol. 29, 275–289 (1970)

    ADS  CAS  Article  Google Scholar 

  27. Lange, R. A. & Carmichael, I. S. E. The Aurora volcanic field, California-Nevada: oxygen fugacity constraints on the development of andesitic magma. Contrib. Mineral. Petrol. 125, 167–185 (1996)

    ADS  CAS  Article  Google Scholar 

  28. Le Roux, V., Lee, C.-T. A. & Turner, S. J. Zn/Fe systematics in mafic and ultramafic systems: implications for detecting major element heterogeneities in the Earth’s mantle. Geochim. Cosmochim. Acta 74, 2779–2796 (2010)

    ADS  CAS  Article  Google Scholar 

  29. Kress, V. C. & Carmichael, I. S. E. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib. Mineral. Petrol. 108, 82–92 (1991)

    ADS  CAS  Article  Google Scholar 

  30. Rowe, M. C., Kent, A. J. R. & Nielsen, R. L. Subduction influence on oxygen fugacity and trace and volatile elements in basalts across the Cascade Volcanic Arc. J. Petrol. 50, 61–91 (2009)

    ADS  CAS  Article  Google Scholar 

  31. Holloway, J. R. Redox reactions in seafloor basalts: possible insights into silicic hydrothermal systems. Chem. Geol. 210, 225–230 (2004)

    ADS  CAS  Article  Google Scholar 

Download references


Discussions and debates with D. Canil, R. Lange, E. Cottrell and K. Kelley are appreciated. We especially thank H. O’Neill for insights. This work was facilitated by a Geological Society of America award (to C.-T.A.L.) F.A. was supported by the Keith-Weiss Visiting Professorship at Rice University.

Author information

Authors and Affiliations



C.-T.A.L. designed the project and wrote the paper, P.L. compiled the ferric iron contents of arc lavas, measurements were done by C.-T.A.L. and V.L.R., and all authors contributed to discussions and data analysis.

Corresponding author

Correspondence to Cin-Ty A. Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Data, Supplementary Figure 1 with a legend and additional references. (PDF 324 kb)

Supplementary Tables

This file contains Supplementary Tables 1 and 2. (XLS 113 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, CT., Luffi, P., Le Roux, V. et al. The redox state of arc mantle using Zn/Fe systematics. Nature 468, 681–685 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing