Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hidden magnetic excitation in the pseudogap phase of a high-Tc superconductor

Abstract

The elucidation of the pseudogap phenomenon of the high-transition-temperature (high-Tc) copper oxides—a set of anomalous physical properties below the characteristic temperature T* and above Tc—has been a major challenge in condensed matter physics for the past two decades1. Following initial indications of broken time-reversal symmetry in photoemission experiments2, recent polarized neutron diffraction work demonstrated the universal existence of an unusual magnetic order below T* (refs 3, 4). These findings have the profound implication that the pseudogap regime constitutes a genuine new phase of matter rather than a mere crossover phenomenon. They are furthermore consistent with a particular type of order involving circulating orbital currents, and with the notion that the phase diagram is controlled by a quantum critical point5. Here we report inelastic neutron scattering results for HgBa2CuO4+δ that reveal a fundamental collective magnetic mode associated with the unusual order, and which further support this picture. The mode’s intensity rises below the same temperature T* and its dispersion is weak, as expected for an Ising-like order parameter6. Its energy of 52–56 meV renders it a new candidate for the hitherto unexplained ubiquitous electron–boson coupling features observed in spectroscopic studies7,8,9,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of a weakly dispersing magnetic collective mode.
Figure 2: Presence of the collective mode throughout the entire 2D Brillouin zone.
Figure 3: Temperature dependence of the collective mode demonstrates its connection to the pseudogap phenomenon.

Similar content being viewed by others

References

  1. Norman, M. R., Pines, D. & Kallin, C. The pseudogap: friend or foe of high T c? Adv. Phys. 54, 715–733 (2005)

    Article  CAS  ADS  Google Scholar 

  2. Kaminski, A. et al. Spontaneous breaking of time-reversal symmetry in the pseudogap state of a high-T c superconductor. Nature 416, 610–613 (2002)

    Article  CAS  ADS  Google Scholar 

  3. Fauqué, B. et al. Magnetic order in the pseudogap phase of high-T c superconductors. Phys. Rev. Lett. 96, 197001 (2006)

    Article  ADS  Google Scholar 

  4. Li, Y. et al. Unusual magnetic order in the pseudogap region of the superconductor HgBa2CuO4+δ . Nature 455, 372–375 (2008)

    Article  CAS  ADS  Google Scholar 

  5. Varma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997)

    Article  CAS  ADS  Google Scholar 

  6. Varma, C. M. Theory of the pseudogap state of the cuprates. Phys. Rev. B 73, 155113 (2006)

    Article  ADS  Google Scholar 

  7. Lanzara, A. et al. Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. Nature 412, 510–514 (2001)

    Article  CAS  ADS  Google Scholar 

  8. Yang, J. et al. Exchange boson dynamics in cuprates: optical conductivity of HgBa2CuO4+δ . Phys. Rev. Lett. 102, 027003 (2009)

    Article  CAS  ADS  Google Scholar 

  9. van Heumen, E. et al. Optical determination of the relation between the electron-boson coupling function and the critical temperature in high-T c cuprates. Phys. Rev. B 79, 184512 (2009)

    Article  ADS  Google Scholar 

  10. Lee, J. et al. Interplay of electron-lattice interactions and superconductivity in Bi2Sr2CaCu2O8+δ . Nature 442, 546–550 (2006)

    Article  CAS  ADS  Google Scholar 

  11. Zhao, X. et al. Crystal growth and characterization of the model high-temperature superconductor HgBa2CuO4+δ . Adv. Mater. 18, 3243–3247 (2006)

    Article  CAS  Google Scholar 

  12. Barišić, N. et al. Demonstrating the model nature of the high-temperature superconductor HgBa2CuO4+δ . Phys. Rev. B 78, 054518 (2008)

    Article  ADS  Google Scholar 

  13. Eisaki, H. et al. Effect of chemical inhomogeneity in bismuth-based copper oxide superconductors. Phys. Rev. B 69, 064512 (2004)

    Article  ADS  Google Scholar 

  14. Vignolle, B. et al. Two energy scales in the spin excitations of the high-temperature superconductor La2-x Sr x CuO4 . Nature Phys. 3, 163–167 (2007)

    Article  CAS  ADS  Google Scholar 

  15. Hinkov, V. et al. Spin dynamics in the pseudogap state of a high-temperature superconductor. Nature Phys. 3, 780–785 (2007)

    Article  CAS  ADS  Google Scholar 

  16. Rossat-Mignod, J. et al. Neutron scattering study of the YBa2Cu3O6+x system. Physica C 185–189, 86–92 (1991)

    Article  ADS  Google Scholar 

  17. Yu, G. et al. Magnetic resonance in the model high-temperature superconductor HgBa2CuO4+δ . Phys. Rev. B 81, 064518 (2010)

    Article  ADS  Google Scholar 

  18. Tranquada, J. M. et al. Quantum magnetic excitations from stripes in copper oxide superconductors. Nature 429, 534–538 (2004)

    Article  CAS  ADS  Google Scholar 

  19. Pailhès, S. et al. Resonant magnetic excitations at high energy in superconducting YBa2Cu3O6. 85 . Phys. Rev. Lett. 93, 167001 (2004)

    Article  ADS  Google Scholar 

  20. Grbić, M. S. et al. Microwave measurements of the in-plane and c-axis conductivity in HgBa2CuO4+δ : discriminating between superconducting fluctuations and pseudogap effects. Phys. Rev. B 80, 094511 (2009)

    Article  ADS  Google Scholar 

  21. Norman, M. R. & Pépin, C. The electronic nature of high temperature cuprate superconductors. Rep. Prog. Phys. 66, 1547–1610 (2003)

    Article  CAS  ADS  Google Scholar 

  22. Tahir-Kheli, J. & Goddard, W. A., III Chiral plaquette polaron theory of cuprate superconductivity. Phys. Rev. B 76, 014514 (2007)

    Article  ADS  Google Scholar 

  23. Weber, C. et al. Orbital currents in extended Hubbard models of high-T c cuprate superconductors. Phys. Rev. Lett. 102, 017005 (2009)

    Article  ADS  Google Scholar 

  24. Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998)

    Article  CAS  ADS  Google Scholar 

  25. Sachdev, S. Quantum criticality: competing ground states in low dimensions. Science 288, 475–480 (2000)

    Article  CAS  ADS  Google Scholar 

  26. Chakravarty, S. et al. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001)

    Article  ADS  Google Scholar 

  27. Simon, M. E. & Varma, C. M. Detection and implications of a time-reversal breaking state in underdoped cuprates. Phys. Rev. Lett. 89, 247003 (2002)

    Article  CAS  ADS  Google Scholar 

  28. Hayden, S. M. et al. The structure of the high-energy spin excitations in a high-transition-temperature superconductor. Nature 429, 531–534 (2004)

    Article  CAS  ADS  Google Scholar 

  29. Yamamoto, A., Hu, W. & Tajima, S. Thermoelectric power and resistivity of HgBa2CuO4+δ over a wide doping range. Phys. Rev. B 63, 024504 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank T. H. Geballe, S. A. Kivelson, E. M. Motoyama and C. M. Varma for discussions. This work was supported by the US Department of Energy and the US National Science Foundation, and by the National Natural Science Foundation, China. Y.L. acknowledges support from the Alexander von Humboldt Foundation during the final stage of completing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.G., P.B. and Y.L. planned the project. Y.L., V.B. and G.Y. performed the neutron scattering experiments. Y.L., N.B. and X.Z. characterized and prepared the samples. N.B. performed the resistivity measurements. P.S., R.A.M., K.H., Y.S. and P.B. were local contacts for the neutron scattering experiments. Y.L. and M.G. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to M. Greven.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion in 9 sections, Supplementary Data, additional references and Supplementary Figures 1-8 with legends. (PDF 6567 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Balédent, V., Yu, G. et al. Hidden magnetic excitation in the pseudogap phase of a high-Tc superconductor. Nature 468, 283–285 (2010). https://doi.org/10.1038/nature09477

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09477

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing