Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A methyl transferase links the circadian clock to the regulation of alternative splicing


Circadian rhythms allow organisms to time biological processes to the most appropriate phases of the day–night cycle1. Post-transcriptional regulation is emerging as an important component of circadian networks2,3,4,5,6, but the molecular mechanisms linking the circadian clock to the control of RNA processing are largely unknown. Here we show that PROTEIN ARGININE METHYL TRANSFERASE 5 (PRMT5), which transfers methyl groups to arginine residues present in histones7 and Sm spliceosomal proteins8,9, links the circadian clock to the control of alternative splicing in plants. Mutations in PRMT5 impair several circadian rhythms in Arabidopsis thaliana and this phenotype is caused, at least in part, by a strong alteration in alternative splicing of the core-clock gene PSEUDO RESPONSE REGULATOR 9 (PRR9). Furthermore, genome-wide studies show that PRMT5 contributes to the regulation of many pre-messenger-RNA splicing events, probably by modulating 5′-splice-site recognition. PRMT5 expression shows daily and circadian oscillations, and this contributes to the mediation of the circadian regulation of expression and alternative splicing of a subset of genes. Circadian rhythms in locomotor activity are also disrupted in dart5-1, a mutant affected in the Drosophila melanogaster PRMT5 homologue, and this is associated with alterations in splicing of the core-clock gene period and several clock-associated genes. Our results demonstrate a key role for PRMT5 in the regulation of alternative splicing and indicate that the interplay between the circadian clock and the regulation of alternative splicing by PRMT5 constitutes a common mechanism that helps organisms to synchronize physiological processes with daily changes in environmental conditions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: A role for PRMT5 in the circadian system of Arabidopsis.
Figure 2: PRMT5 affects expression and alternative splicing of the clock gene PRR9.
Figure 3: Genome-wide analysis of pre-mRNA splicing in Arabidopsis prmt5 mutants.
Figure 4: PRMT5 regulates circadian rhythms and pre-mRNA splicing in Drosophila.

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

The data discussed in this publication have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus and are accessible through GEO Series accession number GSE18808 (


  1. Young, M. W. & Kay, S. A. Time zones: a comparative genetics of circadian clocks. Nature Rev. Genet. 2, 702–715 (2001)

    Article  CAS  Google Scholar 

  2. Hazen, S. et al. Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays. Genome Biol. 10, R17 (2009)

    Article  Google Scholar 

  3. Schoning, J. C., Streitner, C., Meyer, I. M., Gao, Y. & Staiger, D. Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Res. 36, 6977–6987 (2008)

    Article  CAS  Google Scholar 

  4. Guo, J., Cheng, P., Yuan, H. & Liu, Y. The exosome regulates circadian gene expression in a posttranscriptional negative feedback loop. Cell 138, 1236–1246 (2009)

    Article  CAS  Google Scholar 

  5. Majercak, J., Chen, W. & Edery, I. Splicing of the period gene 3′-terminal intron is regulated by light, circadian clock factors, and phospholipase C. Mol. Cell. Biol. 24, 3359–3372 (2004)

    Article  CAS  Google Scholar 

  6. Collins, B. H., Rosato, E. & Kyriacou, C. P. Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C. Proc. Natl Acad. Sci. USA 101, 1945–1950 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Bedford, M. & Richard, S. Arginine methylation: an emerging regulator of protein function. Mol. Cell 18, 263–272 (2005)

    Article  CAS  Google Scholar 

  8. Gonsalvez, G., Rajendra, T., Tian, L. & Matera, A. The Sm-protein methyltransferase, Dart5, is essential for germ-cell specification and maintenance. Curr. Biol. 16, 1077–1089 (2006)

    Article  CAS  Google Scholar 

  9. Anne, J., Ollo, R., Ephrussi, A. & Mechler, B. Arginine methyltransferase Capsuléen is essential for methylation of spliceosomal Sm proteins and germ cell formation in Drosophila. Development 134, 137–146 (2007)

    Article  CAS  Google Scholar 

  10. Nozue, K. et al. Rhythmic growth explained by coincidence between internal and external cues. Nature 448, 358–361 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Alabadi, D. et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880–883 (2001)

    Article  CAS  Google Scholar 

  12. Pei, Y. et al. Mutations in the type II protein arginine methyltransferase AtPRMT5 result in pleiotropic developmental defects in Arabidopsis. Plant Physiol. 144, 1913–1923 (2007)

    Article  CAS  Google Scholar 

  13. Schmitz, R., Sung, S. & Amasino, R. Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 105, 411–416 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Wang, X. et al. SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis. EMBO J. 26, 1934–1941 (2007)

    Article  CAS  Google Scholar 

  15. Edwards, K. D. et al. FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell 18, 639–650 (2006)

    Article  CAS  Google Scholar 

  16. Farré, E. M., Harmer, S. L., Harmon, F. G., Yanovsky, M. J. & Kay, S. A. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr. Biol. 15, 47–54 (2005)

    Article  Google Scholar 

  17. Matsushika, A., Imamura, A., Yamashino, T. & Mizuno, T. Aberrant expression of the light-inducible and circadian-regulated APRR9 gene belonging to the circadian-associated APRR1/TOC1 quintet results in the phenotype of early flowering in Arabidopsis thaliana. Plant Cell Physiol. 43, 833–843 (2002)

    Article  CAS  Google Scholar 

  18. Chari, A. et al. An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs. Cell 135, 497–509 (2008)

    Article  CAS  Google Scholar 

  19. Zhang, Z. et al. SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 133, 585–600 (2008)

    Article  CAS  Google Scholar 

  20. Gonsalvez, G. B., Praveen, K., Hicks, A. J., Tian, L. & Matera, A. G. Sm protein methylation is dispensable for snRNP assembly in Drosophila melanogaster. RNA 14, 878–887 (2008)

    Article  CAS  Google Scholar 

  21. Simpson, C. G. et al. Monitoring changes in alternative precursor messenger RNA splicing in multiple gene transcripts. Plant J. 53, 1035–1048 (2008)

    Article  CAS  Google Scholar 

  22. Raczynska, K. D. et al. Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res. 38, 265–278 (2010)

    Article  CAS  Google Scholar 

  23. Zhang, N., Kallis, R. P., Ewy, R. G. & Portis, A. R. Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform. Proc. Natl Acad. Sci. USA 99, 3330–3334 (2002)

    Article  ADS  CAS  Google Scholar 

  24. Sarov-Blat, L., So, W., Liu, L. & Rosbash, M. The Drosophila takeout gene is a novel molecular link between circadian rhythms and feeding behavior. Cell 101, 647–656 (2000)

    Article  CAS  Google Scholar 

  25. Ceriani, M. F. et al. Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior. J. Neurosci. 22, 9305–9319 (2002)

    Article  CAS  Google Scholar 

  26. Glaser, F. T. & Stanewsky, R. Temperature synchronization of the Drosophila circadian clock. Curr. Biol. 15, 1352–1363 (2005)

    Article  CAS  Google Scholar 

  27. Zhang, D., Abovich, N. & Rosbash, M. A biochemical function for the Sm complex. Mol. Cell 7, 319–329 (2001)

    Article  CAS  Google Scholar 

  28. Schor, I. E., Rascovan, N., Pelisch, F., Alló, M. & Kornblihtt, A. R. Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc. Natl Acad. Sci. USA 106, 4325–4330 (2009)

    Article  ADS  CAS  Google Scholar 

  29. McDonald, M. & Rosbash, M. Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107, 567–578 (2001)

    Article  CAS  Google Scholar 

  30. Rosbash, M. The implications of multiple circadian clock origins. PLoS Biol. 7, e62 (2009)

    Article  Google Scholar 

  31. Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003)

    Article  ADS  Google Scholar 

  32. Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962)

    Article  CAS  Google Scholar 

  33. Rezával, C., Werbajh, S. & Ceriani, M. F. Neuronal death in Drosophila triggered by GAL4 accumulation. Eur. J. Neurosci. 25, 683–694 (2007)

    Article  Google Scholar 

  34. Hicks, K. A. et al. Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science 274, 790–792 (1996)

    Article  ADS  CAS  Google Scholar 

  35. Plautz, J. D. et al. Quantitative analysis of Drosophila period gene transcription in living animals. J. Biol. Rhythms 12, 204–217 (1997)

    Article  CAS  Google Scholar 

  36. Millar, A. J., Carre, I. A., Strayer, C. A., Chua, N. H. & Kay, S. A. Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267, 1161–1163 (1995)

    Article  ADS  CAS  Google Scholar 

  37. Strayer, C. et al. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289, 768–771 (2000)

    Article  ADS  CAS  Google Scholar 

  38. Michael, T. P. et al. A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol. 6, e225 (2008)

    Article  Google Scholar 

  39. Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–5121 (2001)

    Article  ADS  CAS  Google Scholar 

  40. Zhang, X., Byrnes, J., Gal, T., Li, W.-H. & Borevitz, J. Whole genome transcriptome polymorphisms in Arabidopsis thaliana. Genome Biol. 9, R165 (2008)

    Article  Google Scholar 

  41. Sheth, N. et al. Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Res. 34, 3955–3967 (2006)

    Article  CAS  Google Scholar 

  42. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004)

    Article  CAS  Google Scholar 

  43. Perales, M. & Mas, P. A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. Plant Cell 19, 2111–2123 (2007)

    Article  CAS  Google Scholar 

  44. Métivier, R. et al. Estrogen receptor-α directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115, 751–763 (2003)

    Article  Google Scholar 

  45. Bastow, R. et al. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164–167 (2004)

    Article  ADS  CAS  Google Scholar 

Download references


We thank E. M. Farré and S. L. Harmer for seeds; J. J. Casal and S. Mora-García for critical reading of the manuscript; the laboratories of A.R.K. and M.J.Y. for discussions; J. Fuller and P. Tondi for technical assistance. This work was supported by grants from the Fundación Antorchas, the Agencia Nacional de Promoción de Ciencia y Tecnología of Argentina, the Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina and the University of Buenos Aires to M.J.Y. and A.R.K., and from the European Union Network of Excellence on Alternative Splicing (EURASNET) to A.R.K. and J.W.S.B. M.J.Y. and A.R.K. are Howard Hughes Medical Institute international research scholars. P.M.’s laboratory is supported by a Ministerio de Educación y Ciencia grant, the European Young Investigator Awards and the EMBO Young Investigator Awards; M.F.C.’s laboratory is supported by Proyecto de Investigación Científica y Tecnológica 2006-1249.

Author information

Authors and Affiliations



S.E.S. and E.P. contributed equally to this work and performed most of the experiments in this study, with technical assistance from M.L.R., C.E.H., M.A.G.H. and P.D.C. J.C.C. and P.M. conducted bioluminescence and chromatin immunoprecipation assays. E.J.B. and A.D.C. performed locomotor activity assays, RNA extractions and immunostaining experiments in Drosophila. E.P., C.G.S. and J.W.S.B. performed high-resolution RT–PCR experiments. X.Z. and J.O.B. analysed tiling array data. S.E.S., E.P., M.F.C., A.R.K. and M.J.Y. provided input in the preparation of the manuscript, and S.E.S., E.P. and M.J.Y. wrote the paper.

Corresponding author

Correspondence to Marcelo J. Yanovsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-23 with legends. (PDF 582 kb)

Supplementary Tables

This file contains Supplementary Tables 1-10. (XLS 589 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sanchez, S., Petrillo, E., Beckwith, E. et al. A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature 468, 112–116 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing