Lithospheric layering in the North American craton

Abstract

How cratons—extremely stable continental areas of the Earth’s crust—formed and remained largely unchanged for more than 2,500 million years is much debated. Recent studies of seismic-wave receiver function data have detected a structural boundary under continental cratons at depths too shallow to be consistent with the lithosphere–asthenosphere boundary, as inferred from seismic tomography and other geophysical studies. Here we show that changes in the direction of azimuthal anisotropy with depth reveal the presence of two distinct lithospheric layers throughout the stable part of the North American continent. The top layer is thick (150 km) under the Archaean core and tapers out on the surrounding Palaeozoic borders. Its thickness variations follow those of a highly depleted layer inferred from thermo-barometric analysis of xenoliths. The lithosphere–asthenosphere boundary is relatively flat (ranging from 180 to 240 km in depth), in agreement with the presence of a thermal conductive root that subsequently formed around the depleted chemical layer. Our findings tie together seismological, geochemical and geodynamical studies of the cratonic lithosphere in North America. They also suggest that the horizon detected in receiver function studies probably corresponds to the sharp mid-lithospheric boundary rather than to the more gradual lithosphere–asthenosphere boundary.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Precambrian basement age in the North American continent and seismic depth profiles at selected locations.
Figure 2: Upper-mantle layering defined by changes in the direction of the fast axis of azimuthal anisotropy.
Figure 3: Thickness and anisotropy of layer 1 and LAB thickness across the North American continent.
Figure 4: Relative thickness of layers 1 and 2 along the depth cross-section AA' shown in Figs 1a and 2a .
Figure 5: Cartoon illustrating the inferred stratification of the lithosphere.

References

  1. 1

    Hoffman, P. F. United plates of America. The birth of a craton: early proterozoic assembly and growth of Laurentia. Annu. Rev. Earth Planet. Sci. 16, 543–603 (1988)

    ADS  Article  Google Scholar 

  2. 2

    Haggerty, S. E. A diamond trilogy: superplumes, supercontinents, and supernovae. Science 285, 851–860 (1999)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Gung, Y., Panning, M. & Romanowicz, B. Global anisotropy and the thickness of continents. Nature 422, 707–711 (2003)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Mareschal, J. C. & Jaupart, C. Variations of surface heat flow and lithospheric thermal structure beneath the North American craton. Earth Planet. Sci. Lett. 223, 65–77 (2004)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Shapiro, S. S., Hager, B. H. & Jordan, T. H. The continental tectosphere and Earth’s long-wavelength gravity field. Lithos 48, 135–152 (1999)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Carlson, R. W., Pearson, D. G. & James, D. E. Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys. 43 10.1029/2004rg000156 (2005)

  7. 7

    Jordan, T. H. Composition and development of the continental tectosphere. Nature 274, 544–548 (1978)

    CAS  ADS  Article  Google Scholar 

  8. 8

    King, S. D. Archean cratons and mantle dynamics. Earth Planet. Sci. Lett. 234, 1–14 (2005)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Sleep, N. H. Survival of Archean cratonal lithosphere. J. Geophys. Res. 108 10.1029/2001jb000169 (2003)

  10. 10

    Cooper, C. M., Lenardic, A. & Moresi, L. The thermal structure of stable continental lithosphere within a dynamic mantle. Earth Planet. Sci. Lett. 222, 807–817 (2004)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Lenardic, A., Moresi, L. & Mühlhaus, H. The role of mobile belts for the longevity of deep cratonic lithosphere: the crumple zone model. Geophys. Res. Lett. 27 10.1029/1999gl008410 (2000)

  12. 12

    Lee, C. T. in Archean Geodynamics and Environments (eds Benn, K. Mareschal, J. C. & Condie, K. C.) 89–114 (American Geophysical Union Monograph, 2006)

    Google Scholar 

  13. 13

    Griffin, W. L. et al. Lithosphere mapping beneath the North American plate. Lithos 77, 873–922 (2004)

    CAS  ADS  Article  Google Scholar 

  14. 14

    Jones, A. G. et al. The electrical structure of the Slave craton. Lithos 71, 505–527 (2003)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Rychert, C. A. & Shearer, P. M. A global view of the lithosphere-asthenosphere boundary. Science 324, 495–498 (2009)

    CAS  ADS  Article  Google Scholar 

  16. 16

    Abt, D. et al. North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions. J. Geophys. Res. 10.1029/2009JB006710 (in the press)

  17. 17

    Yuan, X., Kind, R., Xueqing, L. & Rongjiang, W. The S receiver functions: synthetics and data example. Geophys. J. Int. 165, 555–564 (2006)

    ADS  Article  Google Scholar 

  18. 18

    Romanowicz, B. The thickness of tectonic plates. Science 324, 474–476 (2009)

    CAS  ADS  Article  Google Scholar 

  19. 19

    Thybo, H. & Perchuc, E. The seismic 8° discontinuity and partial melting in continental mantle. Science 275, 1626–1629 (1997)

    CAS  Article  Google Scholar 

  20. 20

    Levin, V., Menke, W. & Park, J. Shear wave splitting in the Appalachians and the Urals; a case for multilayered anisotropy. J. Geophys. Res. 104, 17975–17994 (1999)

    ADS  Article  Google Scholar 

  21. 21

    Deschamps, F., Lebedev, S., Meier, T. & Trampert, J. Stratified seismic anisotropy reveals past and present deformation beneath the East-central United States. Earth Planet. Sci. Lett. 274, 489–498 (2008)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Griffin, W. L. et al. The origin and evolution of Archean lithospheric mantle. Precambr. Res. 127, 19–41 (2003)

    CAS  ADS  Article  Google Scholar 

  23. 23

    Canil, D. Canada's craton: a bottom's-up view. GSA Today 18, 4–11 (2008)

    Article  Google Scholar 

  24. 24

    Babuska, V. & Cara, M. Seismic Anisotropy in the Earth Ch. 5 (Kluwer Academic, 1991)

    Google Scholar 

  25. 25

    Marone, F. & Romanowicz, B. The depth distribution of azimuthal anisotropy in the continental upper mantle. Nature 447, 198–201 (2007)

    CAS  ADS  Article  Google Scholar 

  26. 26

    Gripp, A. E. & Gordon, R. G. Young tracks of hotspots and current plate velocities. Geophys. J. Int. 150, 321–361 (2002)

    ADS  Article  Google Scholar 

  27. 27

    Yuan, H. & Romanowicz, B. Depth dependent azimuthal anisotropy in the western US upper mantle. Earth Planet. Sci. Lett. (submitted)

  28. 28

    Whitmeyer, S. J. & Karlstrom, K. E. Tectonic model for the Proterozoic growth of North America. Geosphere 3, 220–259 (2007)

    Article  Google Scholar 

  29. 29

    Percival, J. A. et al. Tectonic evolution of the western Superior Province from NATMAP and Lithoprobe studies. Can. J. Earth Sci. 43 10.1139/E1106-1062 (2006)

  30. 30

    van der Velden, A. J. & Cook, F. A. Relict subduction zones in Canada. J. Geophys. Res. 110 10.1029/2004jb003333 (2005)

  31. 31

    Bostock, M. G. Mantle stratigraphy and evolution of the Slave Province. J. Geophys. Res. 103, 21183–21200 (1998)

    ADS  Article  Google Scholar 

  32. 32

    Yuan, H. & Dueker, K. in The Rocky Mountain Region—An Evolving Lithosphere: Tectonics, Geochemistry, and Geophysics (eds Randy, G. & Karlstrom, K. E.) Geophysical monograph 154, 329–345 (American Geophysical Union, 2005)

    Google Scholar 

  33. 33

    Silver, P. G. & Chan, W. W. Shear wave splitting and subcontinental mantle deformation. J. Geophys. Res. 96, 16429–16454 (1991)

    ADS  Article  Google Scholar 

  34. 34

    Vinnik, L. P., Makeyeva, L. I., Milev, A. & Usenko, A. Y. Global patterns of azimuthal anisotropy and deformations in the continental mantle. Geophys. J. Int. 111, 433–447 (1992)

    ADS  Article  Google Scholar 

  35. 35

    St-Onge, M. R., Wodicka, N. & Ijewliw, O. Polymetamorphic evolution of the Trans-Hudson orogen, Baffin Island, Canada: integration of petrological, structural and geochronological data. J. Petrol. 48, 271–302 (2007)

    CAS  ADS  Article  Google Scholar 

  36. 36

    Culotta, R. C., Pratt, T. & Oliver, J. A tale of two sutures: COCORP's deep seismic surveys of the Grenville province in the eastern U.S. midcontinent. Geology 18, 646–649 (1990)

    ADS  Article  Google Scholar 

  37. 37

    Snyder, D. B. Lithospheric growth at margins of cratons. Tectonophysics 355, 7–22 (2002)

    ADS  Article  Google Scholar 

  38. 38

    Montagner, J.-P. & Nataf, H.-C. Vectorial tomography. I. Theory. Geophys. J. 94, 295–307 (1988)

    ADS  Article  Google Scholar 

  39. 39

    Marone, F., Gung, Y. & Romanowicz, B. Three-dimensional radial anisotropic structure of the North American upper mantle from inversion of surface waveform data. Geophys. J. Int. 171, 206–222 (2007)

    ADS  Article  Google Scholar 

  40. 40

    Plomerová, J. & Babuska, V. Long memory of mantle lithosphere fabric—European LAB constrained from seismic anisotropy. Lithos 10.1016/j.lithos.2010.1001.1008 (in the press)

  41. 41

    Li, A., Fischer, K. M., Wysession, M. E. & Clarke, T. J. Mantle discontinuities and temperature under the North American continental keel. Nature 395, 160–163 (1998)

    CAS  ADS  Article  Google Scholar 

  42. 42

    Darbyshire, F. A. & Lebedev, S. Rayleigh wave phase-velocity heterogeneity and multilayered azimuthal anisotropy of the Superior Craton, Ontario. Geophys. J. Int. 176, 215–234 (2009)

    ADS  Article  Google Scholar 

  43. 43

    Li, A., Forsyth, D. W. & Fischer, K. M. Shear velocity structure and azimuthal anisotropy beneath eastern North America from Rayleigh wave inversion. J. Geophys. Res. 108 10.1029/2002JB002259 (2003)

  44. 44

    Long, M. D. & Silver, P. G. The subduction zone flow field from seismic anisotropy: a global view. Science 319, 315–318 (2008)

    CAS  ADS  Article  Google Scholar 

  45. 45

    Arndt, N. T., Coltice, N., Helmstaedt, H. & Gregoire, M. Origin of Archean subcontinental lithospheric mantle: some petrological constraints. Lithos 109, 61–71 (2009)

    CAS  ADS  Article  Google Scholar 

  46. 46

    Mierdel, K., Keppler, H., Smyth, J. R. & Langenhorst, F. Water solubility in aluminous orthopyroxene and the origin of Earth’s asthenosphere. Science 315, 364–368 (2007)

    CAS  ADS  Article  Google Scholar 

  47. 47

    Sleep, N. H. Stagnant lid convection and carbonate metasomatism of the deep continental lithosphere. Geochem. Geophys. Geosyst. 10 10.1029/2009gc002702 (2009)

  48. 48

    Rychert, C. A., Fischer, K. M. & Rondenay, S. A sharp lithosphere–asthenosphere boundary imaged beneath eastern North America. Nature 436, 542–545 (2005)

    CAS  ADS  Article  Google Scholar 

  49. 49

    Lekic, V. & Romanowicz, B. A simple method for improving crustal corrections in waveform tomography. Geophys. J. Int. 182, 265–278 (2010)

    ADS  Google Scholar 

  50. 50

    Montagner, J.-P., Griot-Pommera, D.-A. & Lave, J. How to relate body wave and surface wave anisotropy? J. Geophys. Res. 105, 19015–19027 (2000)

    ADS  Article  Google Scholar 

  51. 51

    Li, X.-D. & Romanowicz, B. Comparison of global waveform inversions with and without considering cross-branch modal coupling. Geophys. J. Int. 121, 695–709 (1995)

    ADS  Article  Google Scholar 

  52. 52

    Montagner, J.-P. & Nataf, H.-C. A simple method for inverting the azimuthal anisotropy of surface waves. J. Geophys. Res. 91, 511–520 (1986)

    ADS  Article  Google Scholar 

  53. 53

    Panning, M. & Romanowicz, B. A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys. J. Int. 167, 361–379 (2006)

    ADS  Article  Google Scholar 

  54. 54

    Montagner, J.-P. & Anderson, D. L. Petrological constraints on seismic anisotropy. Phys. Earth Planet. Inter. 54, 82–105 (1989)

    ADS  Article  Google Scholar 

  55. 55

    Mégnin, C. & Romanowicz, B. The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and higher-mode waveforms. Geophys. J. Int. 143, 709–728 (2000)

    ADS  Article  Google Scholar 

  56. 56

    Lekic, V. Inferring the Elastic Structure of the Mantle using the Spectral Element Method PhD thesis, University of California (2009)

    Google Scholar 

  57. 57

    Tarantola, A. & Valette, B. Generalized nonlinear inverse problems solved using the least squares criterion. Rev. Geophys. Space Phys. 20, 219–232 (1982)

    ADS  MathSciNet  Article  Google Scholar 

  58. 58

    Yuan, H., Romanowicz, B., Fisher, K. & Abt, D. 3-D shear wave radially and azimuthally anisotropic velocity model of the North American upper mantle. Geophys. J. Int. (submitted)

Download references

Acknowledgements

We thank the IRIS Data Management Center, the Geological Survey of Canada and the Northern California Earthquake Data Center for providing the waveform data used in this study. Discussion with K. Fischer helped improve the manuscript. We thank K. Liu, R. Allen, M. Fouch, A. Frederiksen and A. Courtier for providing their SKS compilations, and W. Griffin and S. O’Reilly for their North American olivine composition measurements. This study was supported by a grant from the National Science Foundation/EarthScope programme. This is the Berkeley Seismological Laboratory contribution number 10-08.

Author information

Affiliations

Authors

Contributions

B.R. developed the concept and methodology of the study. H.Y. assembled the data set, and performed the inversions and the supporting resolution tests. Both authors extensively discussed the results and jointly developed implications. Both authors contributed to writing the paper.

Corresponding author

Correspondence to Barbara Romanowicz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Information 1 - 2, References and Supplementary Figures 1 - 12 with legends. (PDF 4938 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yuan, H., Romanowicz, B. Lithospheric layering in the North American craton. Nature 466, 1063–1068 (2010). https://doi.org/10.1038/nature09332

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.