MEC-17 is an α-tubulin acetyltransferase


In most eukaryotic cells, subsets of microtubules are adapted for specific functions by post-translational modifications (PTMs) of tubulin subunits. Acetylation of the ε-amino group of K40 on α-tubulin is a conserved PTM on the luminal side of microtubules1 that was discovered in the flagella of Chlamydomonas reinhardtii2,3. Studies on the significance of microtubule acetylation have been limited by the undefined status of the α-tubulin acetyltransferase. Here we show that MEC-17, a protein related to the Gcn5 histone acetyltransferases4 and required for the function of touch receptor neurons in Caenorhabditis elegans5,6, acts as a K40-specific acetyltransferase for α-tubulin. In vitro, MEC-17 exclusively acetylates K40 of α-tubulin. Disruption of the Tetrahymena MEC-17 gene phenocopies the K40R α-tubulin mutation and makes microtubules more labile. Depletion of MEC-17 in zebrafish produces phenotypes consistent with neuromuscular defects. In C. elegans, MEC-17 and its paralogue W06B11.1 are redundantly required for acetylation of MEC-12 α-tubulin, and contribute to the function of touch receptor neurons partly via MEC-12 acetylation and partly via another function, possibly by acetylating another protein. In summary, we identify MEC-17 as an enzyme that acetylates the K40 residue of α-tubulin, the only PTM known to occur on the luminal surface of microtubules.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: MEC-17 is required for acetylation of K40 on α-tubulin in Tetrahymena.
Figure 2: MEC-17 and W06B11.1 are required for acetylation of K40 and contribute to touch sensation in C. elegans.
Figure 3: MEC-17 is required for K40 acetylation in zebrafish and normal embryonic development.
Figure 4: MEC-17 controls the levels of microtubule acetylation in mammalian cells.
Figure 5: MEC-17 has intrinsic, K40-specific α-TAT activity.


  1. 1

    Nogales, E., Whittaker, M., Milligan, R. A. & Downing, K. H. High-resolution model of the microtubule. Cell 96, 79–88 (1999)

    CAS  Article  Google Scholar 

  2. 2

    L'Hernault, S. W. & Rosenbaum, J. L. Chlamydomonas α-tubulin is posttranslationally modified in the flagella during flagellar assembly. J. Cell Biol. 97, 258–263 (1983)

    CAS  Article  Google Scholar 

  3. 3

    LeDizet, M. & Piperno, G. Identification of an acetylation site of Chlamydomonas α-tubulin. Proc. Natl Acad. Sci. USA 84, 5720–5724 (1987)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Steczkiewicz, K., Kinch, L., Grishin, N. V., Rychlewski, L. & Ginalski, K. Eukaryotic domain of unknown function DUF738 belongs to Gcn5-related N-acetyltransferase superfamily. Cell Cycle 5, 2927–2930 (2006)

    CAS  Article  Google Scholar 

  5. 5

    Chalfie, M. & Au, M. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243, 1027–1033 (1989)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Zhang, Y. et al. Identification of genes expressed in C. elegans touch receptor neurons. Nature 418, 331–335 (2002)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Verhey, K. J. & Gaertig, J. The tubulin code. Cell Cycle 6, 2152–2160 (2007)

    CAS  Article  Google Scholar 

  8. 8

    Gaertig, J. et al. Acetylation of lysine 40 in α-tubulin is not essential in Tetrahymena thermophila . J. Cell Biol. 129, 1301–1310 (1995)

    CAS  Article  Google Scholar 

  9. 9

    Kozminski, K. G., Diener, D. R. & Rosenbaum, J. L. High level expression of nonacetylatable α-tubulin in Chlamydomonas reinhardtii . Cell Motil. Cytoskeleton 25, 158–170 (1993)

    CAS  Article  Google Scholar 

  10. 10

    Witte, H., Neukirchen, D. & Bradke, F. Microtubule stabilization specifies initial neuronal polarization. J. Cell Biol. 180, 619–632 (2008)

    CAS  Article  Google Scholar 

  11. 11

    Dompierre, J. P. et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J. Neurosci. 27, 3571–3583 (2007)

    CAS  Article  Google Scholar 

  12. 12

    Creppe, C. et al. Elongator controls the migration and differentiation of cortical neurons through acetylation of α-tubulin. Cell 136, 551–564 (2009)

    CAS  Article  Google Scholar 

  13. 13

    Nakata, T. & Hirokawa, N. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J. Cell Biol. 162, 1045–1055 (2003)

    CAS  Article  Google Scholar 

  14. 14

    Reed, N. A. et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol. 16, 2166–2172 (2006)

    CAS  Article  Google Scholar 

  15. 15

    Konishi, Y. & Setou, M. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nature Neurosci. 12, 559–567 (2009)

    CAS  Article  Google Scholar 

  16. 16

    Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458 (2002)

    ADS  CAS  Article  Google Scholar 

  17. 17

    North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. & Verdin, E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11, 437–444 (2003)

    CAS  Article  Google Scholar 

  18. 18

    Maruta, H., Greer, K. & Rosenbaum, J. L. The acetylation of α-tubulin and its relationship to the assembly and disassembly of microtubules. J. Cell Biol. 103, 571–579 (1986)

    CAS  Article  Google Scholar 

  19. 19

    Fukushige, T. et al. MEC-12, an α-tubulin required for touch sensitivity in C. elegans . J. Cell Sci. 112, 395–403 (1999)

    CAS  PubMed  Google Scholar 

  20. 20

    LeDizet, M. & Piperno, G. Detection of acetylated α-tubulin by specific antibodies. Methods Enzymol. 196, 264–274 (1991)

    CAS  Article  Google Scholar 

  21. 21

    Barlow, S. B., Gonzalez-Garay, M. L. & Cabral, F. Paclitaxel-dependent mutants have severely reduced microtubule assembly and reduced tubulin synthesis. J. Cell Sci. 115, 3469–3478 (2002)

    CAS  PubMed  Google Scholar 

  22. 22

    Bounoutas, A., O'Hagan, R. & Chalfie, M. The multipurpose 15-protofilament microtubules in C. elegans have specific roles in mechanosensation. Curr. Biol. 19, 1362–1367 (2009)

    CAS  Article  Google Scholar 

  23. 23

    Frøkjaer-Jensen, C. et al. Single-copy insertion of transgenes in Caenorhabditis elegans . Nature Genet. 40, 1375–1383 (2008)

    Article  Google Scholar 

  24. 24

    Sun, Z. et al. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131, 4085–4093 (2004)

    CAS  Article  Google Scholar 

  25. 25

    Wilson, S. W. & Easter, S. S., Jr Stereotyped pathway selection by growth cones of early epiphysial neurons in the embryonic zebrafish. Development 112, 723–746 (1991)

    CAS  PubMed  Google Scholar 

  26. 26

    Fox, M. A. & Sanes, J. R. Synaptotagmin I and II are present in distinct subsets of central synapses. J. Comp. Neurol. 503, 280–296 (2007)

    CAS  Article  Google Scholar 

  27. 27

    Solinger, J. A. et al. The Caenorhabditis elegans Elongator complex regulates neuronal α-tubulin acetylation. PLoS Genet. 6, e1000820 (2010)

    Article  Google Scholar 

  28. 28

    Chen, C., Tuck, S. & Bystrom, A. S. Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants. PLoS Genet. 5, e1000561 (2009)

    Article  Google Scholar 

  29. 29

    Ohkawa, N. et al. N-acetyltransferase ARD1–NAT1 regulates neuronal dendritic development. Genes Cells 13, 1171–1183 (2008)

    CAS  PubMed  Google Scholar 

  30. 30

    Shen, Q. et al. NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules. Exp. Cell Res. 315, 1653–1667 (2009)

    CAS  Article  Google Scholar 

  31. 31

    Mochizuki, K. High efficiency transformation of Tetrahymena using a codon-optimized neomycin resistance gene. Gene 425, 79–83 (2008)

    CAS  Article  Google Scholar 

  32. 32

    Cassidy-Hanley, D. et al. Germline and somatic transformation of mating Tetrahymena thermophila by particle bombardment. Genetics 146, 135–147 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Hai, B. & Gorovsky, M. A. Germ-line knockout heterokaryons of an essential α-tubulin gene enable high-frequency gene replacement and a test of gene transfer from somatic to germ-line nuclei in Tetrahymena thermophila . Proc. Natl Acad. Sci. USA 94, 1310–1315 (1997)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Wloga, D. et al. Members of the Nima-related kinase family promote disassembly of cilia by multiple mechanisms. Mol. Biol. Cell 17, 2799–2810 (2006)

    CAS  Article  Google Scholar 

  35. 35

    Gaertig, J., Gao, Y., Tishgarten, T., Clark, T. G. & Dickerson, H. W. Surface display of a parasite antigen in the ciliate Tetrahymena thermophila . Nature Biotechnol. 17, 462–465 (1999)

    CAS  Article  Google Scholar 

  36. 36

    Piperno, G. & Fuller, M. T. Monoclonal antibodies specific for an acetylated form of α-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J. Cell Biol. 101, 2085–2094 (1985)

    CAS  Article  Google Scholar 

  37. 37

    Jerka-Dziadosz, M., Strzyewska-Jowko, I., Wojsa-Lugowska, U., Krawczynska, W. & Krzywicka, A. The dynamics of filamentous structures in the apical band, oral crescent, fission line and the postoral meridional filament in Tetrahymena thermophila revealed by the monoclonal antibody 12G9. Protist 152, 53–67 (2001)

    CAS  Article  Google Scholar 

  38. 38

    Janke, C. et al. Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308, 1758–1762 (2005)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Wloga, D. et al. TTLL3 is a tubulin glycine ligase that regulates the assembly of cilia. Dev. Cell 16, 867–876 (2009)

    CAS  Article  Google Scholar 

  40. 40

    Brenner, S. The genetics of Caenorhabditis elegans . Genetics 77, 71–94 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Miller, D. M. & Shakes, D. C. Immunofluorescence microscopy. Methods Cell Biol. 48, 365–394 (1995)

    CAS  Article  Google Scholar 

  42. 42

    Wloga, D. et al. Glutamylation on α-tubulin is not essential but affects the assembly and functions of a subset of microtubules in Tetrahymena . Eukaryot. Cell 7, 1362–1372 (2008)

    CAS  Article  Google Scholar 

  43. 43

    Yakovich, A. J., Ragone, F. L., Alfonzo, J. D., Sackett, D. L. & Werbovetz, K. A. Leishmania tarentolae: purification and characterization of tubulin and its suitability for antileishmanial drug screening. Exp. Parasitol. 114, 289–296 (2006)

    CAS  Article  Google Scholar 

  44. 44

    Kuninger, D., Lundblad, J., Semirale, A. & Rotwein, P. A non-isotopic in vitro assay for histone acetylation. J. Biotechnol. 131, 253–260 (2007)

    CAS  Article  Google Scholar 

Download references


This work was supported by funds from the National Science Foundation (MBC-033965 to J.G.), American Cancer Society (RSG DDC-112979 to S.T.D.), and National Institutes of Health (R01GM074212 to E.T.K., R01AI067981 to N.S.M., R01GM089912 to J.G.). S.T.D. is a Georgia Cancer Coalition Distinguished Investigator. We are grateful to M. Chalfie for the mec-12(e1607) mutant, J. Frankel for 12G10 mAb (available from the Developmental Studies Hybridoma Bank), M. Gorovsky for SG anti-tubulin antibodies, D. Allis for anti-hv1 antibodies, B. Feldman for mismatch morpholinos, and S. T. Dougan laboratory members for advice and assistance with zebrafish experiments.

Author information




J.S.A., D.W., J.K., N.G.S., S.L.-A., S.T.D., E.T.K. and J.G. designed and performed the experiments. N.S.M., S.T.D., E.T.K. and J.G. supervised the work in their respective laboratories. J.G. integrated data and wrote drafts of the paper that were edited by all co-authors.

Corresponding author

Correspondence to Jacek Gaertig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Tables 1-2, and Supplementary Figures 1-8, with legends. (PDF 3547 kb)

Supplementary Movie 1

The movie shows zebrafish embryos injected with 1 ng of random sequence morpholinos and recorded at 48 hpf. (MOV 4228 kb)

Supplementary Movie 2

The movie shows zebrafish embryos injected with 1 ng of MEC17-ATG morpholinos and recorded at 48 hpf. (MOV 7074 kb)

Supplementary Movie 3

The movie shows zebrafish embryps injected with 1 ng of MEC17-SP morpholinos and recorded at 48 hpf. (MOV 7043 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Akella, J., Wloga, D., Kim, J. et al. MEC-17 is an α-tubulin acetyltransferase. Nature 467, 218–222 (2010).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing