A mechanically stabilized receptor–ligand flex-bond important in the vasculature


Haemostasis in the arteriolar circulation mediated by von Willebrand factor (VWF) binding to platelets is an example of an adhesive interaction that must withstand strong hydrodynamic forces acting on cells. VWF is a concatenated, multifunctional protein that has binding sites for platelets as well as subendothelial collagen1,2. Binding of the A1 domain in VWF to the glycoprotein Ib α subunit (GPIbα) on the surface of platelets mediates crosslinking of platelets to one another and the formation of a platelet plug for arterioles3,4. The importance of VWF is illustrated by its mutation in von Willebrand disease, a bleeding diathesis1. Here, we describe a novel mechanochemical specialization of the A1–GPIbα bond for force-resistance. We have developed a method that enables, for the first time, repeated measurements of the binding and unbinding of a receptor and ligand in a single molecule (ReaLiSM). We demonstrate two states of the receptor–ligand bond, that is, a flex-bond. One state is seen at low force; a second state begins to engage at 10 pN with a 20-fold longer lifetime and greater force resistance. The lifetimes of the two states, how force exponentiates lifetime, and the kinetics of switching between the two states are all measured. For the first time, single-molecule measurements on this system are in agreement with bulk phase measurements. The results have important implications not only for how platelets bound to VWF are able to resist force to plug arterioles, but also how increased flow activates platelet plug formation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The A1 and GP1bα single-molecule construct and change in extension on unbinding and rebinding.
Figure 2: Force spectroscopy and bond lifetime.
Figure 3: Force-clamp experiments.
Figure 4: The flex-bond.


  1. 1

    Sadler, J. E. New concepts in von Willebrand disease. Annu. Rev. Med. 56, 173–191 (2005)

    CAS  Article  Google Scholar 

  2. 2

    Ruggeri, Z. M. & Mendolicchio, G. L. Adhesion mechanisms in platelet function. Circ. Res. 100, 1673–1685 (2007)

    CAS  Article  Google Scholar 

  3. 3

    Ruggeri, Z. M., Orje, J. N., Habermann, R., Federici, A. B. & Reininger, A. J. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 108, 1903–1910 (2006)

    CAS  Article  Google Scholar 

  4. 4

    Nesbitt, W. S. et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nature Med. 15, 665–673 (2009)

    CAS  Article  Google Scholar 

  5. 5

    Huizinga, E. G. et al. Structures of glycoprotein Ibα and its complex with von Willebrand factor A1 domain. Science 297, 1176–1179 (2002)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Dumas, J. J. et al. Crystal structure of the wild-type von Willebrand factor A1-glycoprotein Ibα complex reveals conformation differences with a complex bearing von Willebrand disease mutations. J. Biol. Chem. 279, 23327–23334 (2004)

    CAS  Article  Google Scholar 

  7. 7

    Bustamante, C. & Smith, S. Light-force sensor and method for measuring axial optical-trap forces from changes in light momentum along an optic axis. US Patent 7,133. 132 (2004)

  8. 8

    Bustamante, C., Smith, S. B., Liphardt, J. & Smith, D. Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol. 10, 279–285 (2000)

    CAS  Article  Google Scholar 

  9. 9

    Evans, E. & Ritchie, K. Strength of a weak bond connecting flexible polymer chains. Biophys. J. 76, 2439–2447 (1999)

    CAS  Article  Google Scholar 

  10. 10

    Dudko, O. K., Hummer, G. & Szabo, A. Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc. Natl Acad. Sci. USA 105, 15755–15760 (2008)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Bell, G. I. Models for the specific adhesion of cells to cells: a theoretical framework for adhesion mediated by reversible bonds between cell surface molecules. Science 200, 618–627 (1978)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Miura, S. et al. Interaction of von Willebrand factor domain A1 with platelet glycoprotein Ibα-(1–289). Slow intrinsic binding kinetics mediate rapid platelet adhesion. J. Biol. Chem. 275, 7539–7546 (2000)

    CAS  Article  Google Scholar 

  13. 13

    Dong, J. F. et al. Ristocetin-dependent, but not botrocetin-dependent, binding of von Willebrand factor to the platelet glycoprotein Ib-IX-V complex correlates with shear-dependent interactions. Blood 97, 162–168 (2001)

    CAS  Article  Google Scholar 

  14. 14

    De Luca, M. et al. Structure and function of the von Willebrand factor A1 domain: analysis with monoclonal antibodies reveals distinct binding sites involved in recognition of the platelet membrane glycoprotein Ib-IX-V complex and ristocetin-dependent activation. Blood 95, 164–172 (2000)

    CAS  PubMed  Google Scholar 

  15. 15

    Dembo, M., Torney, D. C., Saxman, K. & Hammer, D. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. Lond. B 234, 55–83 (1988)

    CAS  ADS  Article  Google Scholar 

  16. 16

    Phan, U. T., Waldron, T. T. & Springer, T. A. Remodeling of the lectin/EGF-like interface in P- and L-selectin increases adhesiveness and shear resistance under hydrodynamic force. Nature Immunol. 7, 883–889 (2006)

    CAS  Article  Google Scholar 

  17. 17

    Astrof, N. S., Salas, A., Shimaoka, M., Chen, J. F. & Springer, T. A. Importance of force linkage in mechanochemistry of adhesion receptors. Biochemistry 45, 15020–15028 (2006)

    CAS  Article  Google Scholar 

  18. 18

    Springer, T. A. Structural basis for selectin mechanochemistry. Proc. Natl Acad. Sci. USA 106, 91–96 (2009)

    CAS  ADS  Article  Google Scholar 

  19. 19

    Thomas, W. E., Vogel, V. & Sokurenko, E. Biophysics of catch bonds. Annu Rev Biophys 37, 399–416 (2008)

    CAS  Article  Google Scholar 

  20. 20

    Schneider, S. W. et al. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc. Natl Acad. Sci. USA 104, 7899–7903 (2007)

    CAS  ADS  Article  Google Scholar 

  21. 21

    Zhang, X., Halvorsen, K., Zhang, C. Z., Wong, W. P. & Springer, T. A. Mechanoenzymatic cleavage of the ultralarge vascular protein, von Willebrand Factor. Science 324, 1330–1334 (2009)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Yago, T. et al. Platelet glycoprotein Ibα forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. J. Clin. Invest. 118, 3195–3207 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Ulrichts, H. et al. Shielding of the A1 domain by the D′D3 domains of von Willebrand factor modulates its interaction with platelet glycoprotein Ib-IX-V. J. Biol. Chem. 281, 4699–4707 (2006)

    CAS  Article  Google Scholar 

  24. 24

    Chen, S. & Springer, T. A. An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear. J. Cell Biol. 144, 185–200 (1999)

    CAS  Article  Google Scholar 

  25. 25

    Shen, Y. et al. Requirement of leucine-rich repeats of glycoprotein (GP) Ibα for shear-dependent and static binding of von Willebrand factor to the platelet membrane GP Ib-IX-V complex. Blood 95, 903–910 (2000)

    CAS  PubMed  Google Scholar 

  26. 26

    Shen, Y. et al. Leucine-rich repeats 2-4 (Leu60-Glu128) of platelet glycoprotein Ibα regulate shear-dependent cell adhesion to von Willebrand factor. J. Biol. Chem. 281, 26419–26423 (2006)

    CAS  Article  Google Scholar 

  27. 27

    Celikel, R., Ruggeri, Z. M. & Varughese, K. I. von Willebrand factor conformation and adhesive function is modulated by an internalized water molecule. Nature Struct. Biol. 7, 881–884 (2000)

    CAS  Article  Google Scholar 

  28. 28

    Kieliszewski, M. J., Leykam, J. F. & Lamport, D. T. Trypsin cleaves lysylproline in a hydroxyproline-rich glycoprotein from Zea mays. Pept. Res. 2, 246–248 (1989)

    CAS  PubMed  Google Scholar 

  29. 29

    Smith, S. B., Cui, Y. & Bustamante, C. Optical-trap force transducer that operates by direct measurement of light momentum. Methods Enzymol. 361, 134–162 (2003)

    CAS  Article  Google Scholar 

  30. 30

    Thomas, W. et al. Catch-bond model derived from allostery explains force-activated bacterial adhesion. Biophys. J. 90, 753–764 (2006)

    CAS  ADS  Article  Google Scholar 

  31. 31

    Aricescu, A. R., Lu, W. & Jones, E. Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D 62, 1243–1250 (2006)

    Article  Google Scholar 

Download references


Supported by NIH HL-48675 (TAS). The authors are indebted to S. B. Smith and C. Bustamante for help with laser tweezers construction and insightful discussion. We thank B. Coller, O. K. Dudko and C. Lu for reagents and insightful discussions, and J. Dill for software for data analysis.

Author information




T.A.S. designed and supervised the project. X.Z. cloned the ReaLiSM construct. J.K. designed experiments and collected and analysed data. C.-Z.Z. analysed data. T.A.S, J.K. and C.-Z.Z. wrote the paper.

Corresponding author

Correspondence to Timothy A. Springer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Results, Supplementary Figures 1- 6 with legends, Supplementary Tables 1-2 and References. (PDF 774 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, J., Zhang, C., Zhang, X. et al. A mechanically stabilized receptor–ligand flex-bond important in the vasculature. Nature 466, 992–995 (2010). https://doi.org/10.1038/nature09295

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.