Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Scale-free structural organization of oxygen interstitials in La2CuO4+y

Abstract

It is well known that the microstructures of the transition-metal oxides1,2,3, including the high-transition-temperature (high-Tc) copper oxide superconductors4,5,6,7, are complex. This is particularly so when there are oxygen interstitials or vacancies8, which influence the bulk properties. For example, the oxygen interstitials in the spacer layers separating the superconducting CuO2 planes undergo ordering phenomena in Sr2O1+yCuO2 (ref. 9), YBa2Cu3O6+y (ref. 10) and La2CuO4+y (refs 11–15) that induce enhancements in the transition temperatures with no changes in hole concentrations. It is also known that complex systems often have a scale-invariant structural organization16, but hitherto none had been found in high-Tc materials. Here we report that the ordering of oxygen interstitials in the La2O2+y spacer layers of La2CuO4+y high-Tc superconductors is characterized by a fractal distribution up to a maximum limiting size of 400 μm. Intriguingly, these fractal distributions of dopants seem to enhance superconductivity at high temperature.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Mixed real- and reciprocal-space images of dopant ordering.
Figure 2: Scale-free fractal distribution and power-law statistical analysis of ordered i-O domains.
Figure 3: Nucleation and growth of i-O superstructures.

References

  1. Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005)

    ADS  CAS  Article  Google Scholar 

  2. Tokura, Y. Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797–851 (2006)

    ADS  CAS  Article  Google Scholar 

  3. Wadhawan, V. K. Smart Structures: Blurring the Distinction Between the Living and the Nonliving (Monogr. Phys. Chem. Mater. 65, Oxford Univ. Press, 2007)

    Book  Google Scholar 

  4. Bishop, A. R. HTC oxides: a collusion of spin, charge and lattice. J. Phys. Conf. Ser. 108, 012027 (2008)

    Article  Google Scholar 

  5. Müller, K. A. in Superconductivity in Complex Systems (eds Müller, K. A. & Bussmann-Holder, A.) 1–11 (Structure and Bonding 114, Springer, 2005)

    Google Scholar 

  6. Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba−La−Cu−O system. Z. Phys. B 64, 189–193 (1986)

    ADS  CAS  Article  Google Scholar 

  7. Phillips, J. C. Percolative theories of strongly disordered ceramic high temperature superconductors. Proc. Natl Acad. Sci. USA 107, 1307–1310 (2010)

    ADS  CAS  Article  Google Scholar 

  8. Skinner, S. J. & Kilner, J. A. Oxygen ion conductors. Mater. Today 6, 30–37 (2003)

    CAS  Article  Google Scholar 

  9. Liu, Q. Q. et al. Enhancement of the superconducting critical temperature of Sr2CuO3+δ up to 95 K by ordering dopant atoms. Phys. Rev. B 74, 100506(R) (2006)

    ADS  Article  Google Scholar 

  10. Frello, T. et al. Dynamics of oxygen ordering in YBa2Cu3O6+x studied by neutron and high-energy synchrotron X-ray diffraction. Physica C 282–287, 1089–1090 (1997)

    ADS  Article  Google Scholar 

  11. Lorenz, B., Li, Z. G., Honma, T. & Hor, P. H. An intrinsic tendency of electronic phase separation into two superconducting states in La2-xSrxCuO4+y . Phys. Rev. B 65, 144522 (2002)

    ADS  Article  Google Scholar 

  12. Liu, L., Che, G., Zhao, J. & Zhao, Z. Thermal treatment effect of the oxidized LaCuO4: the access of continuous and discontinuous. Physica C 425, 37–43 (2005)

    ADS  CAS  Article  Google Scholar 

  13. Mohottala, H. E. et al. Phase separation in superoxygenated La2−xSrxCuO4+y . Nature Mater. 5, 377–382 (2006)

    ADS  CAS  Article  Google Scholar 

  14. Kusmartsev, F. et al. Transformation of strings into an inhomogeneous phase of stripes and itinerant carriers. Phys. Lett. A 275, 118–123 (2000)

    ADS  CAS  Article  Google Scholar 

  15. Lee, Y. S. et al. Neutron scattering study of the effects of dopant disorder on the superconductivity and magnetic order in stage-4 La2CuO4+y . Phys. Rev. B 69, 020502(R) (2004)

    ADS  Article  Google Scholar 

  16. Barabási, A.-L. & Stanley, H. E. Fractal Concepts in Surface Growth (Cambridge Univ. Press, 1995)

    Book  Google Scholar 

  17. Soh, Y.-A. et al. Local mapping of strain at grain boundaries in colossal magnetoresistive films using X-ray microdiffraction. J. Appl. Phys. 91, 7742–7744 (2002)

    ADS  CAS  Article  Google Scholar 

  18. Evans, P. G., Isaacs, E. D., Aeppli, G., Cai, Z. & Lai, B. X-ray microdiffraction images of antiferromagnetic domain evolution in chromium. Science 295, 1042–1045 (2002)

    ADS  CAS  Article  Google Scholar 

  19. Cojoc, D. et al. Scanning X-ray microdiffraction of optically manipulated liposomes. Appl. Phys. Lett. 91, 234107 (2007)

    ADS  Article  Google Scholar 

  20. Daubechies, I. Ten Lectures on Wavelets (CBMS-NSF Regional Conf. Ser. Appl. Math. 61, Society for Industrial and Applied Mathematics, 1992)

    Book  Google Scholar 

  21. Poccia, N., Ricci, A. & Bianconi, A. Misfit strain in superlattices controlling the electron-lattice interaction via microstrain in active layers. Adv. Condens. Matter Phys. 2010, 261849 (2010)

    Article  Google Scholar 

  22. Agrestini, S., Saini, N. L., Bianconi, G. & Bianconi, A. The strain of CuO2 lattice: the second variable for the phase diagram of cuprate perovskites. J. Phys. Math. Gen. 36, 9133–9142 (2003)

    ADS  CAS  Article  Google Scholar 

  23. Hammel, P. C. et al. Localized holes in superconducting lanthanum cuprate. Phys. Rev. B 57, R712–R715 (1998)

    ADS  CAS  Article  Google Scholar 

  24. Savici, A. T. et al. Muon spin relaxation studies of incommensurate magnetism and superconductivity in stage-4 La2CuO4. 11 and La1. 88Sr0. 12CuO4 . Phys. Rev. B 66, 014524 (2002)

    ADS  Article  Google Scholar 

  25. Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  26. Caivano, R. et al. Feshbach resonance and mesoscopic phase separation near a quantum critical point in multiband FeAs-based superconductors. Superconduct. Sci. Technol. 22, 014004 (2009)

    ADS  Article  Google Scholar 

  27. Cubrovic, M., Zaanen, J. & Schalm, K. String theory, quantum phase transitions, and the emergent Fermi liquid. Science 325, 439–444 (2009)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  28. Bianconi, A. Feshbach shape resonance in multiband superconductivity in heterostructures. J. Superconduct. Novel Magnet. 18, 25–36 (2005)

    Google Scholar 

  29. Bianconi, A., Valletta, A., Perali, A. & Saini, N. L. Superconductivity of a striped phase at the atomic limit. Physica C 296, 269–280 (1998)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the ID13 beamline staff at ESRF, R. Davies, S. Agrestini, V. Palmisano, E. J. Sarria, L. Simonelli and A. Vittorini Orgeas for help in the early stage of this research project. We thank J. Zaanen and G. Bianconi for suggestions, comments and help with the data analysis. This experimental work has been carried out with the financial support of the European STREP project 517039 “Controlling Mesoscopic Phase Separation” (COMEPHS) (2005–2008) and Sapienza University of Rome, research project “Stripes and High-Tc Superconductivity”.

Author information

Authors and Affiliations

Authors

Contributions

A.B. and M.F. designed the experiment; M.B. provided the X-ray beamline; N.P., A.R. and M.F. performed the data analysis. All authors contributed to providing experimental support, interpreting data and writing the manuscript.

Corresponding author

Correspondence to Antonio Bianconi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Information comprising Micro X-ray diffraction experimental set up; Surface resistivity method; The spatial correlation function and Supplementary Figures 1-2 with legends. (PDF 183 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fratini, M., Poccia, N., Ricci, A. et al. Scale-free structural organization of oxygen interstitials in La2CuO4+y. Nature 466, 841–844 (2010). https://doi.org/10.1038/nature09260

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09260

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing